
LEARNING TO COPE WITH SMALL
NOISY DATA IN SOFTWARE EFFORT
ESTIMATION

by

LIYAN SONG

A thesis submitted to
The University of Birmingham
for the degree of
DOCTOR OF PHILOSOPHY

School of Computer Science
College of Engineering and Physical Sciences
The University of Birmingham
January 2019

Abstract

Though investigated for decades, Software Effort Estimation (SEE) remains a challenging

problem in software project management. However, there are several factors hindering

the practical use of SEE models. One major factor is the scarcity of software projects

that are used to construct SEE models due to the long process of software development.

Even given a large number of projects, the collected effort values are usually corrupted by

noise due to the participation of humans. Furthermore, even given enough and noise-free

software projects, SEE models may have sensitive parameters to tune possibly causing

model sensitivity problem.

The thesis focuses on tackling these three issues. It proposes a synthetic data generator

to tackle the data scarcity problem, introduces/constructs uncertain effort estimators to

tackle the data noise problem, and analyses the sensitivity to parameter settings of popular

SEE models. The main contributions of the thesis include:

1. Propose a synthetic project generator and provide an understanding of when and

why it improves prediction performance of what baseline models.

2. Introduce relevance vector machine for uncertain effort estimation.

3. Propose a better uncertain estimation method based on an ensemble strategy.

4. Provide a better understanding of the impact of parameter tuning for SEE methods.

Acknowledgements

I would like to express my deepest gratitude to my supervisor Prof. Xin Yao, who has

shown his constructive supervision, patience, and substantial support throughout my

PhD. He has rarely given me answers but enlightened me with questions; he has guided

me away from big wrongs but allowed for small faults and helped me learn from them.

His ways and attitudes of doing research and his personality have great influence on mine.

I would also like to present my greatest thankfulness to my co-supervisor Dr. Leandro

Lei Minku, who has enlightened me on research topics, gave me valuable guidance on

overcoming difficulties throughout my PhD, and educated me with concrete research skills.

We have many intensive discussions. Without their supervision and encouragement, this

thesis would never have been completed.

Many thanks to the thesis group members (John Bullinaria, Rami Bahsoon, and Le-

andro Minku) for their helpful instructions and discussions. Many thanks also to Machine

Learning Reading Group members: Ata Kaban, Peter Tino, Yuan Shen, Fengzhen Tang,

Luca Rossi, Momodou Sanyan, Frank-Michael Scheleif, and other PhD fellows for the

three-year interesting and in-depth discussions on various research topics. Special thanks

to Dr. Haiping Lu for his nice and helpful supervision in HKBU leading to a fruitful year.

These experience has illuminated my truly passion and enthusiasm for doing research,

which I would treasure as a lifelong career.

I would like to show my special gratitude to my close friend Dr. Fengzhen Tang for her

companion and lots of discussions on my daily life and research work. I am also grateful

to Xiaoning Shen, Jiangshan Yu, Yuan Shen, Luca Rossi, Xiaofen Lu, William Zhong,

Lukas Adam, Roya Soufi, Ulrike Brauer, Silvia Umiliacchi, Klulood AlYahya, Yini Wang,

Hans Hofland, Michael Wang, Michael LoCicero, Dan Liu, Catherine Harris, Vladislav

Kramarev, and many other colleagues and friends for the interesting conversations and

their nice help during this long and painful journey. I have so many first-time in life

spending with them. All these experiences and memories have made up my personality.

Many thanks to Qing Bao, Qiquan Shi, Yang Zhou, Shuyi Zhang, Bo Yuan, Yunwen

Lei, and many other friends and colleagues in HKBU and SUSTech. They encouraged me

to go through the challenging time, making my life relaxing and colourful.

I should show my deepest gratitude to my parents, who give me unconditional love and

forever encouragement and support. If it were not for them, I would be a very different

and nasty person. I should also show my great thankfulness to my husband Yunsheng

Kuang for being at my back for many years. Lastly, I have to show my gratitude to my

younger self. She used to be troublesome, stubborn, and erratic, which makes it much

easier to grow better.

Contents

1 Introduction 1
1.1 Research Questions . 3

1.1.1 Synthetic Data Generation . 4
1.1.2 A Bayesian Approach for Uncertain Effort Estimation 5
1.1.3 Synthetic Bootstrap Ensemble for Uncertain Estimation 6
1.1.4 Sensitivity to Parameter Setting of SEE Methods 7

1.2 Formulation of the Problem . 8
1.2.1 SEE: A Regression Problem . 8
1.2.2 Uncertain Effort Estimation . 9
1.2.3 Data Augmentation in SEE . 10

1.3 Thesis Contributions and Organisation . 11

2 Background and Literature Review 13
2.1 Data Augmentation for Small Data Problem 14

2.1.1 Data Augmentation in ML Classification 15
2.1.2 Data Augmentation in Software Defect Prediction 17
2.1.3 Data Augmentation in ML Regression 18
2.1.4 Data Augmentation in SEE . 19

2.2 Uncertain Effort Estimation Methods . 20
2.2.1 Bootstrap Wrapping . 20
2.2.2 Empirical Error Probability Consistency Assumption 21
2.2.3 Categorical Conversion . 22
2.2.4 Uncertain Prediction from Bayesian Inference 23
2.2.5 Other Methods Optimizing Uncertainty 24

2.3 Parameter Settings for SEE Methods . 24
2.4 Performance Evaluation of SEE Methods 26

2.4.1 SEE Data Sets . 27
2.4.2 Metrics for Point Prediction . 34
2.4.3 Metrics for Prediction Interval . 37

2.5 Summary and Discussion . 39

3 A Synthetic Project Generation Approach for SEE 41
3.1 Introduction . 41
3.2 Our Synthetic Data Generator . 43

3.2.1 Synthetic Feature Generation . 43
3.2.2 Synthetic Effort Generation . 46
3.2.3 Further Discussion on Our Data Generator 47

3.3 Experimental Design . 48
3.3.1 Data Sets . 48
3.3.2 Performance Evaluation . 50
3.3.3 Baseline SEE Methods . 51
3.3.4 Parameter Settings . 53

3.4 Experimental Result and Discussion . 53
3.4.1 Effect of Synthetic Data on Prediction Performance 54
3.4.2 Reasons for Effectiveness of Our Synthetic Projects 60
3.4.3 Comparison of Synthetic Project Generators 64

3.5 Summary and Discussion . 66

4 RVM: A Promising Uncertain Effort Estimator 68
4.1 Introduction . 68
4.2 RVM for Uncertain Effort Estimation . 70
4.3 Experimental Design . 72

4.3.1 Data Sets . 72
4.3.2 Performance Evaluation . 72
4.3.3 Benchmark SEE Methods . 74
4.3.4 Parameter Settings . 74

4.4 Experimental Result and Discussion . 75
4.4.1 Evaluation of Point Estimation of RVM 75
4.4.2 Evaluation of Uncertain Estimation of RVM 77

4.5 Summary and Discussion . 79

5 SynB-RVM: Synthetic Bootstrap Ensemble of RVMs 81
5.1 Introduction . 81
5.2 SynB-RVM: The Proposed Uncertain Estimator 83

5.2.1 Training Phase of SynB-RVM . 84
5.2.2 Prediction Phase of SynB-RVM . 86

5.3 Experimental Design . 89
5.3.1 Data Sets . 90
5.3.2 Performance Evaluation . 90
5.3.3 Point Estimation Benchmark Methods 91
5.3.4 Prediction Interval Benchmark Methods 92
5.3.5 Parameter Settings . 94

5.4 Evaluation of the Proposed SynB-RVM . 96
5.4.1 Evaluation of Point Estimation . 96
5.4.2 Evaluation of Uncertain Estimation 101
5.4.3 Brief Summary . 108

5.5 Investigation into SynB-RVM Components 109

ii

5.5.1 Three Methods that Derive Final Uncertain Prediction 110
5.5.2 Synthetic Displacement and Bootstrap Pruning 111
5.5.3 More Comparisons with Bagging for Point Prediction 116
5.5.4 Correlation Between Point Performance and Relative Width 117
5.5.5 Brief Summary . 118

5.6 Implications to Practice . 119
5.6.1 Prediction Performance and Data Set Characteristics 119
5.6.2 Understandability vs. Better Performance 122
5.6.3 Time Complexity of Uncertain Methods 123

5.7 Summary and Discussion . 125
5.7.1 Summary . 125
5.7.2 Discussion . 127

6 Sensitivity to Parameter Settings for SEE Methods in Online Scenario129
6.1 Introduction . 129
6.2 Analysis Methodology and Experimental Design 131

6.2.1 Online Scenario . 132
6.2.2 Data Sets with Chronological Information 132
6.2.3 Benchmark SEE Methods . 133
6.2.4 Evaluation of Sensitivity to Parameter Settings 135

6.3 Experimental Result and Analyses . 138
6.3.1 Sensitivity of Average Performance Across Time Steps 138
6.3.2 Step-Wise Performance of Best Parameter Settings 142
6.3.3 How Could Ensemble Help? . 144

6.4 Summary and Discussion . 145

7 Conclusions and Future Work 147
7.1 Conclusions . 147

7.1.1 Synthetic Data Generation for Small Data Problem 147
7.1.2 Uncertain Effort Estimation for Noisy Data Problem 149
7.1.3 Statistical Analysis for Model Sensitivity Problem 151

7.2 Future Work . 152
7.2.1 Data Generator with Guided Choice of Training Examples 152
7.2.2 Synthetic Ordinal/Categorical Feature Modelling 153
7.2.3 Synthetic Effort Modelling . 153
7.2.4 Effort Noise Modelling and Non-Symmetric PIs 154
7.2.5 SynB-RVM Variants . 155
7.2.6 Adapting Our Proposed Methods to Online Scenario 155
7.2.7 Model Sensitivity of Our Methods in Online Scenario 155

A Point Effort Estimation Methods 157
A.1 Linear Regression . 157

A.1.1 Multivariate Linear Regression (MLR) 157

iii

A.1.2 Automatically Transformed Linear Model (ATLM) 158
A.1.3 Potential Issue of the Linear Models 159

A.2 Relevance Vector Machine (RVM) . 159
A.3 Support Vector Regression (SVR) . 162
A.4 Analogy-Based Estimation (ABE) . 163
A.5 Regression Tree (RT) . 165
A.6 Artificial Neural Network (ANN) . 165
A.7 Ensembles of Learning Methods . 166

B Statistical Tests for SEE Methods 169
B.1 Wilcoxon Signed-rank Test . 169
B.2 Friedman Test . 171
B.3 Effect Size . 173

C Effect of Synthetic Data on Prediction Performance in Original Scale
of Effort Values 175

D Supplementary Experiments with Separate Test Set 177
D.1 Point Estimate With Spare Test Set . 177
D.2 Uncertain Estimate With Spare Test Set 178

D.2.1 Evaluation on Hit Rate . 178
D.2.2 Evaluation on Relative Width . 180

List of References 181

iv

List of Figures

3.1 Binomial distribution and its ordinal feature modelling. Figure 3.1(a) shows
the PDF of a Binomial distribution, and figure 3.1(b) illustrates the Binomial
modelling for the ordinal feature team expertise. 46

3.2 A demonstration where four synthetic projects help construct MLR for SEE.
The synthetic projects (square) enhance the robustness of its neighbourhood
and alleviate detrimental effect of the noisy training examples. 62

6.1 Parameter values of k in kNN . 142
6.2 The performance of SEE methods on each time step with the best, default and

worst parameter settings in terms of MAE. We do not list the performance of the
method on all data sets, since the trends are similar. Note that the performance
of the worst parameter settings of k-NN is overlapped with that of the default. 143

A.1 Probabilistic effort estimation from RVM for a software project. The predicted
effort values are Gaussian distributed with the most likely value at 1,000 person
hour. 161

A.2 SVR’s model parameters [55]. The ε-sensitive loss function in Eq. (A.14) defines
an ε-tunnel around the predicted effort values, where the errors inside the tunnel
are zero and the errors outside the tunnel are measured by variables ξ and ξ∗. . 163

A.3 An example of RT for SEE and its prediction process. 166

List of Tables

2.1 SEE data sets investigated in the thesis. 27
2.2 Detailed description of Maxwell features. 29
2.3 Detailed description of Kitchenham features. 30
2.4 Detailed description of COCOMO-format features [26]. The term ‘corr’ denotes

correlation to effort. In particular, ‘U-shape’ means giving programmers either
too much or too little time to develop a system can be detrimental. 31

2.5 Groups data sets from ISBSG repository according to organization type. Only
the groups with at least 20 projects were maintained following ISBSG’s guideline. 33

2.6 Detailed description of ISBSG features. 33

3.1 SEE data sets that are cast into 3 groups representing small, medium and large
data set sizes according to the ratio of the data number over the feature number.
Three sets of holdout values are assigned to three groups of data sets respectively. 49

3.2 Parameter values of the SEE methods investigated. 53
3.3 Performance comparison between pairs of syn.SEEr vs bsl.SEEr across 14 data

sets in terms of MAE for small, medium, and large training set sizes. Different
training set sizes refer to different holdout values in table 3.1. The reported values
are the mean of 30 runs followed by their STDs. The comparison is highlighted
in orange (dark grey) and bold font for large, in yellow (light grey) and bold
font for medium, and in bold font for small effect size. The last two rows show
Wilcoxon tests with Bonferroni correction. The overall comparison of bsl.SEEr
vs syn.SEEr can be seen from aveRank (average ranks). The first value 1 (or
0) in Wilcoxon row means there is (or not) significant difference detected, and
its corresponding p-value comes the next. Significant difference is highlighted in
orange (dark grey) on this row. 55

vi

3.4 Performance comparison of syn.SEEr vs syn.cmp.SEEr across 14 data sets in
terms of MAE with small, medium, and large training set sizes. The reported
values are the mean of 30 runs followed by their STDs. Effect size across
30 runs of each SEE data set is used to measure the performance difference
between syn.SEEr vs syn.cmp.SEEr and between syn.cmp.SEEr vs bsl.SEEr,
which is exhibited in the cells associated with syn.SEEr and syn.cmp.SEEr re-
spectively. The orange (dark grey) bold/yellow (light grey) bold/bold font in-
dicates large/medium/small effect size. The last two rows show Wilcoxon tests
with Bonferroni correction across all data sets: the rows associated to syn.SEEr
list Wilcoxon results between syn.SEEr vs syn.cmp.SEEr, and the rows associ-
ated to syn.cmp.SEEr list Wilcoxon results between syn.cmp.SEEr vs bsl.SEEr.
Significant difference of Wilcoxon tests is highlighted in orange (dark grey). . . 65

4.1 The investigated SEE data sets. 73
4.2 Parameter values of the investigated SEE methods. The integers in parentheses

are the numbers of investigating parameter values. 75
4.3 Point prediction performance of the investigated SEE methods in terms of MAE.

The ranks of the methods are in the parentheses. AveRank denotes the average
rank of each method across the data sets. 76

4.4 Hit rate values in line with CL0.6827 and CL0.9545. The hit rate that is much
smaller than the corresponding CL is highlighted in yellow (light grey). 77

4.5 Examples of PIs of RVM in each data set. For each data set, the median of the
actual effort values, PIs with CL0.6827 and CL0.9545, and the estimated STDs are
shown. The listed PIs are obtained by taking the median across all lower/upper
bounds of the predicted effort values. This table provides a general idea of RVM’s
PIs for SEE. 79

5.1 Parameter values of the investigated SEE methods for SynB-RVM. The integers
in parentheses are the numbers of investigating parameter values. The amount
of parameter settings is designed to be similar among base learners, and to have
three values for the Bagging ensemble. 95

5.2 Point prediction performance of SEE methods in terms of MAE, MdAE, LSD,
and SA. The reported values are the mean of 30 runs of 10-fold CV. The first
three columns correspond the three versions of our method. The ranks of an SEE
method at each data set are in parentheses. The last row lists their average rank
± STD, where significant difference of Friedman tests across all data sets is high-
lighted in yellow (light grey). Effect size across 30 runs of each data set against
the control method is computed. SynB-RVM 2Dhist is chosen as the control
method as often having the best average rank among the three versions. Cells
in green (light grey)/orange (dark grey) indicate better or worse performance
against the control method with medium/large effect size. 97

5.3 Evaluation of uncertain SEE methods in terms of hit rate measured in Eq. (5.9). 103

vii

5.4 Similar hit rate of uncertain SEE methods. B HitR denotes the benchmark hit
rate being the minimum of the highest hit rate across all methods. The chosen
hit rate may correspond to different CLs. The reported values are the mean of
30 runs of 10-fold CV. 107

5.5 Relative width of similar hit rate of uncertain SEE methods. The reported values
are the mean of 30 runs of 10-fold CV. The last row lists the average ranks
in terms of better relative width, where significant difference of Friedman tests
across all data sets is highlighted in yellow (light grey). Effect size across 30 runs
of each data set against the control method is computed. SynB-RVM 1Dhist is
chosen as the control method for having the best average rank among the three
versions of SynB-RVM. Cells in green (light grey)/orange (dark grey) indicate
significantly better/worse in the control method with medium/large effect size. 107

5.6 Relative width of similar hit rate of SynB-RVM ht1D and EmpRVM. The re-
ported values are the mean of 30 runs of 10-fold CV. Effect size across 30 runs
of each data set against SynB-RVM 1Dhist is computed. Cells in green (light
grey)/orange (dark grey) indicate better/worse in the control method with medi-
um/large effect size. 108

5.7 Summary of performance comparison of SynB-RVM against other SEE meth-
ods. The point prediction metrics include MAE, MdAE, LSD and SA, and the
uncertain prediction metrics include hit rate and relative width. Equality/pos-
itive/negative sign denotes insignificantly different/significantly better/signifi-
cantly worse performance of SynB-RVM against other methods. Non-existing
comparison is denoted as N/A. Note that the comparison in hit rate is an overall
description across the 12 CLs. 108

5.8 Point prediction performance of RVM, SynB-RVM 1Dhist, and its three variants.
The reported values are the mean of 30 runs of 10-fold CV. The rank for a data set
is in parentheses. The last row lists the average rank, and significant difference
of Friedman tests across all data sets is highlighted in yellow (light grey). . . . 112

5.9 Similar hit rate of RVM, SynB-RVM 1Dhist, and its three variants. The reported
values are the mean of 30 runs of 10-fold CV. B HitR denotes the benchmark
hit rate. The chosen hit rate may correspond to different CLs. 113

5.10 Relative width of similar hit rate of the investigating methods. The reported
values are the mean of 30 runs of 10-fold CV. The last row lists the average
rank. Significant difference of Friedman tests across all data sets is highlighted
in yellow (light grey). 114

5.11 Data columns of point prediction error and relative width across SEE data sets
and uncertain methods. ‘PF’ is the acronym of performance in terms of MAE,
MdAE, LSD or SA. There are four such tables to compute Spearman correlation,
one for each performance metric. 118

5.12 Spearman correlation between point prediction performance and relative width
across data sets and uncertain methods. Data columns for Spearman calculation
is in table 5.11. 119

viii

5.13 Summary of the effectiveness of SynB-RVM components. The point predic-
tion metrics include MAE, MdAE, LSD, and SA; the uncertain prediction met-
rics include hit rate and relative width. Equality/positive sign denotes no-
different/significantly better performance of SynB-RVM SpMn against the other
method. 119

5.14 Analysis of the correlation between performance and data characteristics. . 122
5.15 Time complexity of uncertain SEE methods with respect to training and predic-

tion phases. Denote N as the training size, M as the number of Bootstrap bags,
and K as the iterations that the algorithm of RVM converges. Note that ATLM
itself cannot provide uncertain prediction. In practice, the training and predic-
tion processes of BtstrpSEEr/SynB-RVM can be proceeded in parallel, largely
reducing time complexity. 125

6.1 Parameter values of the investigated SEE methods. Default parameter values
are highlighted in bold and correspond to the default settings of WEKA that
perform generally well. The parameter settings of an SEE method consist of
traversing all values of one parameter and keeping the others to the default. . . 135

6.2 Average performance and effect size across time steps for MLP and Bagging+MLP.
STD is the standard deviation across time steps in terms of MAE. Medium/Large
effect size is highlighted in yellow/red (light/dark grey). 140

6.3 Average performance and effect size across time steps for RT and Bagging+RT.
STD is the standard deviation across time steps in terms of MAE. Medium/Large
effect size is highlighted in yellow/red (light/dark grey). 140

6.4 Average performance and effect size across time steps and parameter settings
for K-NN. STD is the standard deviation across time steps in terms of MAE.
Medium/Large effect size is highlighted in yellow/red (light/dark grey). 142

B.1 Comparison of predictors P1 vs P2 in terms of prediction accuracy [50, table 2]. 170
B.2 Comparison of predictors P1, P2, P3, and P4 in terms of prediction accuracy.

The ranks in the parentheses are used in computation of the Friedman test [50,
table 6]. 172

B.3 Holm-Bonferroni post-hoc correction after Friedman test with the significance
level 0.05 for predictors P1, P2, P3, and P4 in terms of prediction accuracy. P1
is chosen as the control method. Statistics {pk} have been sorted in increasing
order [50]. 173

ix

C.1 Performance comparison of pairs of syn.SEEr vs bsl.SEEr across 14 data sets in
terms of MAE in the original effort space for small, medium and large training
set sizes. The different training set sizes refer to different holdout values in
table 3.1. The reported values are the mean of 30 runs followed by their STDs.
The comparison is highlighted in orange (dark grey) and bold font for large, in
yellow (light grey) and bold font for medium, and in bold font for small effect
size. The last two rows list Wilcoxon tests with Bonferroni correction. The
overall comparison of bsl.SEEr vs syn.SEEr can be seen from aveRank (average
rank). The first value 1 (or 0) in Wilcoxon row means there is (or not) significant
difference, and its corresponding p-value comes the next. Significant difference
is highlighted in orange (dark grey) on this row. ’Inf’ indicates infinite error in
terms of MAE, which only happens to MLR or ATLM with small training set
size. Further investigation finds that only one or two out of the total 30 runs
commit extremely large error. 176

D.1 Mean/Median of the actual effort values in Kitchenham, Org3 and Org4. Q1
represents the first quartile (the middle value between the smallest and the
median effort values), and Q3 represents the third quartile (the middle value
between the median and the highest value of the effort). 178

D.2 Point prediction performance of SEE methods in terms of MAE with spare test-
ing sets. The reported values are the mean of 30 runs of 10-fold CV with their
optimal parameter settings determined by validation sets. Effect size across 30
runs of each data set against the control method is computed. SynB-RVM 2Dhist
is chosen as the control method as in table 5.2. Cells in green (light grey)/orange
(dark grey) indicate better or worse performance against the control method with
medium/large effect size. 178

D.3 Average hit rate across 30 runs for SynB-RVM, RVM, and EmpRVM at each CL
on each data set when using spare testing sets. Hit rate is measured in Eq. (5.9).
The values in the parentheses are the percentages (in 100%) of the 30 runs that
succeed in hit rate. Cells in yellow (light grey) highlight methods whose mean
values succeed in reaching or surpassing the corresponding hit rate. 179

D.4 Relative width of similar hit rate of the three types of SynB-RVM, RVM, and
EmpRVM. The reported values are the mean of 30 runs of 10-fold CV. 180

x

List of Algorithms

1 Classical SMOTE algorithm [39]. 16
2 Our synthetic project generator. 47
3 Synthetic project displacement of SynB-RVM. 85
4 Training phase of SynB-RVM. 86
5 Prediction phase of SynB-RVM. 87

xi

List of Abbreviations

k-NN k-Nearest Neighbours

ANN Artificial Neural Network

CDF Cumulative Distribution Function

CI Confidence Interval

CL Confidence Level

CV Cross validation

LOC Line Of Code

LSD Logarithmic Standard Deviation

MAE Mean Absolute Error

MdAE Median Absolute Error

MdMRE Median Magnitude of Relative Error

ML Machine learning

MLR multivariate linear regression

MMRE Mean Magnitude of Relative Error

MRE Magnitude of Relative Error

PDF Probabilistic Distribution Function

PI Prediction Interval

RT Regression Tree

RVM relevance vector machine

SA Standardised Accuracy

SDP Software Defect Prediction

xii

SEE Software effort estimation

SMOTE Synthetic Minority Over-sampling Technique

STD Standard Deviation

SVR Support Vector Regression

xiii

CHAPTER 1

Introduction

Software Effort Estimation (SEE) is the process of predicting the effort (e.g. in person-

month) required to develop a software project. From the Machine Learning (ML) view-

point, SEE is a regression problem with continuous output values. The examples of

input features are software development type, staff team skill, and functional size. It often

takes place in the early stage of software development and continues throughout the entire

progress. Based on it, the project managers make important decisions such as the budget,

the subsequent planning and control, and the bidding price [19]. Good effort estimation is

important in software project management. Both overestimation and underestimation can

cause serious problems: overestimation may result in a company losing bids for contracts

or wasting resources, while underestimation may lead to poor product quality, delay or

even unfinished software systems, and unsatisfied customers [187, 49, 49].

Though investigated for decades, SEE remains a weak link in software project manage-

ment. Project managers have mainly relied on expert judgement to make effort estimation

based on the experience of the experts who are familiar with the development of software

applications [83, 74]. This is partially due to the inconclusive evidence that whether

model-based methods can produce more accurate estimation than expert judgement [85].

1

LIYAN
Highlight

Expert-based methods suffer from several problems: they are not repeatable; the process

of deriving estimation is not explicit; they contain personal bias and are often sensitive

to political pressure; it is costly to find experienced experts for every new project.

In the past three decades, many model-based SEE methods have been developed in an

attempt to circumvent the problems of expert-based methods, where some formal models

or ML methods are proposed to elaborate the completed software projects for predicting

the effort of new software projects [131, 187, 49]. Popular model-based SEE methods

include Boehm’s COCOMO [26], linear regression [99, 162], regression tree [136], neural

network [7], and ensembles of learning machines [110, 136]. They have the advantages of

being repeatable, objective, efficient, and giving better understanding of the estimation

process [187, 49, 49, 89, 187]. Model-based SEE methods can be used as decision support

tools for the project managers to assist expert judgement (rather than replace it). They

can provide additional information based on which the experts can justify and criticize

their estimation [74, 83]. This thesis concentrates on model-based SEE methods.

Despite loads of research papers, the practical use of SEE methods is still not popular,

and SEE remains a challenging problem both for researchers and project managers [83, 85].

There are several factors hindering their practical use [102, 66]. One major factor is the

scarcity of software projects that are used to construct SEE models due to the long process

of software development. Even given a large number of software projects, the collected

effort values are usually corrupted by data noise due to the participation of humans.

And even given enough and noise-free software projects, SEE models usually have tuning

parameters possibly causing model sensitivity problem.

2

Liyan
Cross-Out

This thesis proposes a synthetic project generator to tackle the data scarcity problem,

introduces and proposes uncertain SEE methods to tackle the data noise problem, and

provides a systematic analysis on the sensitivity to parameter settings of popular SEE

methods. We list the three issues mainly investigated in the thesis as below.

1. Synthetic project generation. This study provides an alternative and much cheaper

way to alleviate the data scarcity problem than proposing advanced SEE methods.

2. Uncertain effort estimation. This study tackles the data noise problem and supports

more informative decision making by providing uncertain prediction. This study is

divided into two steps: (1) introduce an existing ML method that can provide

uncertain effort estimation and is suitable for SEE and (2) propose an ensemble

strategy based on this baseline method to improve uncertain prediction performance.

3. Sensitivity to parameter settings of SEE methods. This study draws the attention

to formal and fair parameter tuning in the SEE community. It can also reveal a

possible reason for unsatisfactory prediction performance of SEE methods in view

of inadequate parameter tuning.

More details on the research questions and methodologies presented in the thesis will be

discussed in section 1.1 and chapters 3, 4, 5, and 6.

This chapter is organized as follows. Section 1.1 discusses the research questions

answered by the thesis. Section 1.2 formulates the issues of SEE, including the training

and predicting processes, uncertain effort estimation, and the data augmentation for SEE.

Section 1.3 summarizes the contributions and the organisation of the thesis.

1.1 Research Questions

This section explains the research questions answered by the thesis and their motivations.

More detailed information and the methodology to tackle each research question will be

given in chapters 3, 4, 5, and 6 respectively.

3

1.1.1 Synthetic Data Generation

The first research question answered by the thesis is:

RQ1. Can we generate synthetic software projects to enlarge the training set

size for obtaining better prediction performance? If so, how?

One of the core challenges of SEE is the lack of software projects due to the expensive or

long process of data collection [169, 49, 106, 107, 116]. Consequently, companies usually

have small numbers of completed projects to construct their SEE models, leading to

unsatisfactory prediction performance since the information contained in such small data

probably cannot support appropriate training of SEE models [69, 182, 106].

Existing literature in SEE has frequently attempted to address this problem by creat-

ing advanced models [116, 136, 109]. Rather than introducing sophisticated SEE models

or collecting as many completed software projects as possible, an alternative and much

cheaper way to tackle this issue is to augment data sets by generating synthetic projects

based on the completed ones. However, little work has been done to investigate such

strategies to alleviate the data scarcity problem in SEE literature.

The answer to RQ1 will provide a novel data augmentation method and investigate

how well it tackles the data scarcity problem of SEE. The proposed approach should be

general so that it can be used with any state-of-the-art SEE method. Ideally, it should

be simple and hardly have negative effect on SEE performance.

Chapter 3 proposes our synthetic project generation approach. Experimental results

show that our synthetic projects can improve the performance of SEE methods especially

when the training examples are insufficient; when the generated projects cannot improve

the performance, they are not detrimental either. Therefore, the proposed data generation

approach is helpful in alleviating the data scarcity problem of SEE.

4

1.1.2 A Bayesian Approach for Uncertain Effort Estimation

The second research question answered by this thesis is:

RQ2. Is there any ML approach that can provide uncertain effort estimation?

How well can it perform in terms of point and uncertain prediction?

Most SEE models produce only point effort estimation, i.e., a single estimate of the

effort required to develop a given software project [187, 49]. However, there are several

sources of uncertainty in the context of SEE; simply relying on point estimation may ignore

these uncertain factors and lead project managers to wrong decision-making [174, 91, 84].

Besides providing a point estimate, SEE methods should ideally support the handling

of uncertainty by accessing the probability of falling within a specific interval consisted of

a minimum and maximum effort values, namely Prediction Interval (PI). The certainty on

this PI can be characterized by a Confidence Level (CL). Such uncertain effort estimation

presents more reasonable representation of reality, potentially helping project managers

to make better informed decisions and enabling more flexibility in these decisions [174].

However, just a few studies have been developed for uncertain effort estimation methods.

The answer to RQ2 will provide the first step to tackle the uncertain effort estimation

task by introducing and evaluating an existing ML model that may be suitable for SEE.

More advanced uncertain estimation method can be built on this baseline.

Chapter 4 introduces a Bayesian regression model, namely Relevance Vector Machine

(RVM), to the context of SEE for tackling the uncertain effort estimation task straightly.

RVM explicitly models effort noise and can provide uncertain estimation. Experimental

results show that RVM can achieve competitive performance in terms of point prediction;

statistical analyses on its uncertain estimation shows that the derived PIs can usually

cover the actual effort values. Therefore, RVM is a very promising method for SEE and

should be further exploited.

5

1.1.3 Synthetic Bootstrap Ensemble for Uncertain Estimation

The third research question answered by the thesis is:

RQ3. Can we improve the prediction intervals of RVM? How? How well does

this method perform compared to state-of-the-art point/uncertain methods?

Recently, uncertain effort estimation has attracted increasing attention in the SEE

community [97, 103]. PIs with CLs can be considered as a representative format for

uncertain effort estimation, which allow for risk management and provide more flexibility

to project managers. Chapter 4 introduces RVM to the context of SEE and evaluates

its prediction performance: RVM is competitive to other SEE methods in terms of point

prediction, but the derived PIs with CLs are sometimes too wide to be informative.

The answer to RQ3 will provide a more advanced uncertain effort estimation approach

based on RVM for better PIs with CLs: on the one hand, the PIs with CLs should be

wide enough to capture the actual effort values of many software projects; on the other

hand, they should be sufficiently narrow to be informative and of practical use.

Chapter 5 proposes a novel uncertain effort estimation method, namely Synthetic Boot-

strap ensemble of Relevance Vector Machines (SynB-RVM). SynB-RVM adopts Bootstrap

resampling technique to construct multiple RVMs based on modified Bootstrap training

bags whose replicated training examples are replaced by their synthetic counterparts.

Experimental results show that when used as a point estimator, SynB-RVM can either

significantly outperform or perform similarly compared to state-of-the-art SEE methods.

When used as an uncertain estimator, SynB-RVM can achieve significantly narrower (and

thus more informative) PIs with CLs compared to its baseline RVM. SynB-RVM is su-

perior to other uncertain methods in term of point/uncertain prediction measured in at

least one performance metric.

6

1.1.4 Sensitivity to Parameter Setting of SEE Methods

The fourth research question answered by the thesis is:

RQ4. To what extent do parameter settings affect the performance of SEE

methods, and should we pay attention to their parameter tuning?

Most SEE studies involve comparisons among different methods, which usually have

more than one parameter that need to be tuned [165, 89, 187]. However, as explained by

Minku and Yao [136], the methodology used to choose parameter settings is frequently

omitted from the experimental framework of SEE literature, seemingly making an implicit

assumption that parameter settings would not change the outcomes significantly. There

has been little work investigating the impact of parameter settings for SEE methods.

The answer to RQ4 will provide a better understanding of the impact of parameter

tuning for SEE methods and reveal the possible reasons for unsatisfactory prediction per-

formance of some model-based SEE methods in view of being absent or unfair parameter

tuning in their performance evaluation.

Chapter 6 proposes an analysis methodology and performs systematic experiments to

investigate to what extent parameter settings affect the performance of SEE methods.

Experimental results show that different SEE methods have different sensitivity to their

parameter settings. For instance, regression tree and Bagging ensembled with regression

trees are not very sensitive to their parameter settings, while multilayer Perceptron and

Bagging ensembled with multilayer Perceptrons are extremely sensitive to their param-

eter settings. Thus, the ways of parameter settings should be formally reported in the

experimental framework of SEE literature.

It is worth noting that the thesis does not intend to address all problems about param-

eter tuning of SEE methods, but to encourage studies to use principled schemes for tuning

the parameters. Developing automatic tuning methods is considered as future work.

7

1.2 Formulation of the Problem

This section formally introduces the training and prediction processes of point and un-

certain SEE methods. It also formulates the data generation process for SEE.

1.2.1 SEE: A Regression Problem

From the ML viewpoint, SEE is a regression problem with continuous output values.

SEE methods utilize the accomplished software projects with the collected effort (training

examples) to predict the effort of the future unknown ones (testing examples).

Denote the training set of N software projects as D = {(xn, yn)}Nn=1, where xn =

[xn1 , · · · , xnD]T ∈ RD is the nth training example consisting of D features1, and yn ∈ R1

is the effort for developing this software. Examples of input features {x1, · · · , xD} are

software development type, hardware platform, user interface, tool use, team expertise

quality requirements, staff tool skills, staff team skill, functional size, and so on.

Denote F as a set of learning machines such as regression trees and neural networks

and θ as their model parameters. The training process of point effort estimation aims to

determine the optimal function f(·,θ∗) ∈ F from input features to output effort as

F : RD → R1

f(x;θ∗) = ŷ,
(1.1)

by minimizing a loss function L (·) with respect to model parameter θ as

L (D) =
N∑
n=1

(||f(xn;θ)− yn||∗). (1.2)

If || · ||1 is employed, L (D) is the mean absolute error, being a popular instantiation of

L in SEE. More discussion on its implementation can be found in section 2.4.2. The

training process determines the optimal model parameter θ∗.
1Categorical features can be converted into real-valued ones, and thus can be represented as in RD.

8

For a testing software project (x, y), the prediction process aims to obtain an estimated

effort value ŷ based on the input features x using the constructed SEE model as

ŷ = f(x;θ∗), (1.3)

hoping for small deviation between y and ŷ as L (||y − ŷ||).

In practice, we usually align all training examples into the matrix as

X = [x1, · · · ,xN]T ∈ RN×D, (1.4)

where T denotes the transpose and the comma (semicolon) in [u, v] ([u; v]) represents to

concatenate variable u and v in row (column). The matrix of training examples contains

all training information for building an SEE method with respect to a loss function.

1.2.2 Uncertain Effort Estimation

The training process of uncertain effort estimation aims to determine the optimal function

f(·,θ∗) ∈ F with the modelling of effort noise/uncertainty ε as

F : RD →P

f(x;θ∗) + ε(β∗) = p(ŷ),
(1.5)

by minimizing a loss function L with respect to θ and the parameter of the effort noise

modelling ε(β). Here, P denotes the distribution space of the effort values. The modelling

assumes that effort noise has zero mean and is addictive to and independent of input

features. The training process determines the optimal parameters θ∗ and β∗.

For a testing software project (x, y), the testing process aims to estimate Probability

Distribution Function (PDF) of effort y as

p(ŷ) ∼ F (x;θ∗,β∗). (1.6)

The value with the highest probability can be used as the point estimation.

9

1.2.3 Data Augmentation in SEE

SEE usually suffers from the data scarcity problem due to the expensive or long process

of data collection. As a result, companies usually have limited training examples for effort

estimation, causing unsatisfactory prediction performance of SEE models. Rather than

introducing sophisticated SEE models or collecting as many completed software projects

as possible, we can generate synthetic projects based on the completed projects D , and

augment the SEE data set as

D (new) = D
⋃

D (syn), (1.7)

where D (syn) consists of the generated synthetic projects with the size dγNe, γ > 0 is a

predefined synthetic ratio, and d·e denotes the upward rounding operator (e.g. d1.4e = 2).

The synthetic ratio γ should be small enough not to hinder the information provided by

the real projects, but large enough to be helpful. Hereafter, the model training would be

based on D (new).

Given a randomly chosen training example (x, y) where x = [x1; · · · ;xD], the genera-

tion of a synthetic project can be formulated as

G : (RD,R) → (RD,R)

(


g1(x1;σ)

· · ·

gD(xD;σ)

 , gD+1(y;σ)) = (x(syn), y(syn)),
(1.8)

where G denotes the process of generating a synthetic project, g = [g1, · · · , gD, gD+1] ∈ G

are the generation functions, and σ denotes the parameters of the synthetic generator.

Detailed discussion on the realization of the synthetic project generation will be discussed

in section 3.2.

10

1.3 Thesis Contributions and Organisation

The contributions of the thesis (and its organisation) are:

1. We propose a synthetic data generator to alleviate the data scarcity problem of SEE

and investigate when and why our synthetic projects can improve the prediction

performance of the baseline methods. This is the answer to RQ1 of section 1.1.1

and will be presented in chapter 3, which is based on our paper [*3].

2. We investigate the impact of SEE data set sizes on prediction performance. This is

a by-product for answering RQ1 of section 1.1.1 and will be discussed in the second

last subsection of section 3.4.1, which is based on our paper [*3].

3. We introduce RVM to the context of SEE for uncertain effort estimation and provide

the ways of deriving PIs with CLs for software projects. This is the answer to RQ2

of section 1.1.2 and will be presented in chapter 4, which is based on our paper [*2].

4. We conduct a comprehensive review and categorization for uncertain effort estima-

tors. This is a by-product for answering RQ2 of section 1.1.2 and RQ3 of section 1.1.3

and will be presented in section 2.2, which is based on our paper [*4].

5. We propose a better uncertain effort estimator based on Bootstrap ensemble of

RVMs and perform a thorough comparison against other uncertain SEE methods.

To the best of our knowledge, this is the most thorough experimental comparison

on this topic. This is the answer to RQ3 of section 1.1.3 and will be presented in

chapter 5, which is based on our paper [*4].

6. We systematically evaluate the sensitivity to parameter settings based on statistical

analyses and gain a better understanding of the impact of parameter tuning in the

context of SEE. This is the answer to RQ4 of section 1.1.4 and will be presented in

chapter 6, which is based on our paper [*1].

11

Overall, the main contributions of the thesis are the answers to RQ1 to RQ4, in particular

the proposal of a synthetic project generator (chapter 3), the introduction/proposal of un-

certain SEE methods (chapters 4 and 5), and the investigation on sensitivity to parameter

settings of SEE methods (chapter 6). The thesis also contains chapter 2 with background

knowledge and literature review and chapter 7 with conclusions and future work.

Some contents of this thesis are contained in the following papers:

• [*1] Liyan Song, Leandro L. Minku, and Xin Yao (2013). The Impact of

Parameter Tuning on Software Effort Estimation Using Learning Machines. Inter-

national Conference on Predictor Models in Software Engineering (PROMISE’13),

USA, pp. 9:1-9:10.

• [*2] Liyan Song, Leandro L. Minku, and Xin Yao (2014). The Potential

Benefit of Relevance Vector Machine to Software Effort Estimation. International

Conference on Predictor Models in Software Engineering (PROMISE’14), Italy, pp.

52-61.

• [*3] Liyan Song, Leandro L. Minku, and Xin Yao (2018). A Novel Auto-

mated Approach for Software Effort Estimation based on Data Augmentation. ACM

Symposium on the Foundations of Software Engineering (FSE), USA.

• [*4] Liyan Song, Leandro L. Minku, and Xin Yao (2018). Software Effort In-

terval Prediction via Bayesian Inference and Synthetic Bootstrap Resampling. ACM

Transactions on Software Engineering and Methodology (TOSEM).

12

CHAPTER 2

Background and Literature Review

Many papers have been published in the area of SEE, most of which concentrate on

proposing models that can provide good point prediction [187, 49, 187]. However, the

majority of these studies have ignored three practical issues of SEE. First, the collection

of software projects for constructing SEE models usually takes time due to the long process

of software development, leading to the data scarcity problem. Thus, modern methods

that can generate synthetic data to augment the training set should be reviewed, which can

alleviate the small data problem of SEE. Second, given large amount of training examples,

the collected effort is highly likely to be contaminated by noise due to the participation of

humans in the data collection process. Without providing uncertain effort prediction to

reflect such noise, the estimates could be misleading and the project managers can make

inadequate decisions. Thus, uncertain effort estimators methods should be reviewed.

Finally, the sensitivity of SEE methods to their parameter settings is essential to gain a

better understanding of the methods. Thus, such studies should be reviewed to frame the

most recent outcomes.

This chapter reviews SEE literature on the three issues and provides background

knowledge of SEE data sets and performance metrics. This chapter is organized as follows.

13

Section 2.1 discusses data generation methods for catering small data problem, which is

related to RQ1 of the thesis. Section 2.2 discusses uncertain effort estimators, which is

related to RQ2 and RQ3 of the thesis. Section 2.3 presents previous studies in SEE about

the sensitivity to parameter settings of SEE methods, which is related to RQ4 of the thesis.

Section 2.4 describes performance evaluation for SEE including the data sets investigated

in the thesis and the performance metrics for point and uncertain effort estimation. This

chapter is summarised in section 2.5. Discussion on point effort estimation methods can

be found in appendix A. These studies are related to the thesis as background knowledge

and are used in the experimental comparisons against our proposed methods.

2.1 Data Augmentation for Small Data Problem

Data augmentation technique is data-level that adjusts the number of training examples

and their distribution directly. For regression, it has the potential to enlarge the training

set to alleviate the small data problem; for classification, it increases the number of

minority class to alleviate the imbalance between minority and majority classes.

Section 2.1.1 discusses the data augmentation techniques for classification. Section 2.1.2

discusses software defect prediction that is a typical example of imbalance classification in

the context of software engineering. The two subsections are discussed for being the most

relevant to data augmentation for SEE and being inspiring for our approach. Section 2.1.3

discusses data augmentation techniques for regression. Finally, section 2.1.4 discusses the

existing literature for SEE.

It is noteworthy that the approaches discussed in sections 2.1.1 and 2.1.2 are for

classification problem with discrete output labels (e.g. defect-prone or non-defect), but

SEE is a regression problem with continuous output values. Thus, the data augmentation

methods designed for classification cannot be directly used for SEE since by nature there

are no minority or majority classes in regression.

14

2.1.1 Data Augmentation in ML Classification

There have been many studies in classification that augment the data set size for better

prediction performance. Imbalance classification is a typical example, where the differ-

ence between the numbers of training examples in different categories is huge [71]. One

challenge of learning from imbalance data is that the classifiers would often predict a new

example with the majority label though its label should equal to the minority [186].

Data oversampling is a popular and effective way to tackle the imbalance classification

problem, where synthetic data is generated and added to the minority class for a more

balanced data set [39, 58]. There are several ways to enlarge the minority class.

Random oversampling

It is a non-heuristic method that makes replicates of randomly selected training examples

and adds them to the original training set. The degree of class distribution can be adjusted

to any desired level. It is simple and sometimes effective, but it has been argued that

exact copies can lead to overfitting [39, 20].

Introduction of Gaussian Noise

Lee [119, 120] proposed an easy oversampling technique that generated synthetic minor-

ity data by injecting small Gaussian noise to the features of training examples of the

minority class. The number of synthetic data and the covariance matrix of multivariate

Gaussian noise were predefined in the paper (without explanation). The experimental

result demonstrated the effectiveness of the generated data in improving the classification

performance in terms of ROC area and Kullback-Leibler, probably due to a regularization

induced by the synthetic examples of the minority class for the classification model.

15

Algorithm 1 Classical SMOTE algorithm [39].
1: Input: minority training class Dmin, SMOTE rate τ , and the k in k-NN.
2: Aim: Generate m = d|Dmin| ∗ τe synthetic minority examples to to alleviate the imbalance

problem, where d·e denotes the ceiling integer.
3: Procedures:
4: For a randomly chosen minority example x ∈ Dmin

5: (1) Compute its k-NN set {xs} ⊂ Dmin, where s = {1, · · · , k}.
6: (2) Randomly choose a neighbour xs.
7: (3) Compute difference vector z = xs − x.
8: (4) Multiply the value on each dimension of z by a random value σd ∈ [0, 1], and denote

the result as z′.
9: (5) x(syn) = x + z′.

10: (6) Repeat step (1)∼(5) until generating synthetic minority examples.
11: Output: The generated M synthetic examples.

Synthetic Minority Oversampling Technique

Synthetic Minority Oversampling Technique (SMOTE) is an advanced and probably the

most popular oversampling method showing great success in many applications [92, 39].

It generates synthetic data of the minority class based on the similarities between them.

Specifically, to create a synthetic example, SMOTE randomly selects one of the k-nearest

neighbours in the feature space of a minority example x, denoted by x′, calculates the

difference between them, and then adds the difference vector where each dimension is

multiplied by a random number σ ∈ [0, 1] to x. It is a point along the line between x and

x′. By doing so for certain rounds, it forces the decision boundaries of the minority class

to spread towards the majority class effectively. Algorithm 1 summarizes SMOTE. The

oversampling rate τ and the number of nearest neighbours k are pre-defined parameter.

There are many variants of SMOTE algorithms, some of which are discussed as follows.

Borderline-SMOTE

Borderline-SMOTE [68] is a modification of SMOTE. It assumes that the examples near

classification boundaries are more likely to be misclassified and thus more important.

Only borderline examples are used to generate new synthetic data by applying SMOTE.

16

Adaptive Synthetic Sampling

The main idea of adaptive synthetic sampling [70] is to generate minority class examples

adaptively according to their distributions, where more synthetic examples are created for

‘difficult’ ones than ‘easy’ ones. Similar to borderline-SMOTE, ‘difficult/easy’ is deter-

mined by the neighbourhood of a minority class examples. Specifically, for each training

example x in the minority training set, this technique calculates the proportion of major-

ity class examples in the k-NN set of x, denoted by ∆x. Normalize ∆x so that ∑
x ∆x = 1.

Then, the number of synthetic examples that need to be generated for x equals to ∆x ∗T ,

where T is the desired number of synthetic examples. Intuitively, ∆ describes an empirical

density distribution that decides the number of synthetic examples.

Majority Weighted Minority SMOTE

Similar to adaptive synthetic sampling [70], the main idea of Majority Weighted Minority

SMOTE [18] is to identify the hard-to-learn informative minority class samples and as-

sign weights individually according to their Euclidean distance from the nearest majority

class samples. The synthetic examples are then generated from the weighted informative

minority class samples using a clustering approach.

2.1.2 Data Augmentation in Software Defect Prediction

Software Defect Prediction (SDP) is a typical example of imbalance classification in the

context of software engineering, since the defect samples are much less likely to happen

than the non-defect ones. This subsection is discussed for being among the most related

to the synthetic data generation for SEE task in the context of software engineering.

Data imbalance usually undermines the SDP methods [186, 148], where the defect

predictors often rarely predict the faulty modules. To tackle the imbalance problem of

SDP, a few methods that augment the data set size of the minority class (i.e. the faulty

class) have been proposed [186, 92, 148, 185]. For instance, some studies [92, 148, 185]

17

employed data augmentation methods, such as random oversampling that reproduces the

data of minority class randomly or SMOTE [39] that produces new data based on k-NN, to

enlarge the data set size of minority class. Their experimental studies showed promising

or better effect of the synthetic data in performance improvement. Drown et al. [54]

proposed a genetic algorithm-based data augmentation method, which outperformed the

baseline predictor without the synthetic data as well as other augmentation methods.

2.1.3 Data Augmentation in ML Regression

Despite many studies on data augmentation for classification, there have been few studies

for regression. It may be due to the difficulty in defining minority and majority values

for regression problem.

SMOTE-like data augmentation for regression, usually namely utility-based regression

or imbalance regression, is the mainstream, which assumes that the distribution of the

training examples is imbalanced and bias towards those that are not in accordance with

the user’s preference [153, 179, 178, 16]. In other words, the minority examples are

assumed to be those with small probability of the data distribution.

Specifically, Torgo et al. [179, 178] adapted SMOTE from classification to regression,

namely SMOTER, which quantified the minority examples by an utility function that was

determined by the users or distributions of training examples. For instance, the utility

of a training example is assigned to be inverse proportional to the density of training

examples surrounding it. This training example belongs to the minority or majority class

is determined by a predefined threshold. Their experimental results showed better perfor-

mance than the situations without synthetic data in terms of precision and recall defined

for regression in [153]. Later in 2017, Branco et al. [16] combined SMOTER with ran-

dom under-sampling strategy that might achieve better performance. Their experimental

results showed further performance improvement in terms of F φ
1 defined for regression

18

in [30], when combined with the base learners random forest or multivariate adaptive

regression splines.

2.1.4 Data Augmentation in SEE

To our best knowledge, there has been only one work in the SEE community that tackles

the data scarcity problem by data augmentation [93].

The augmentation method extended SMOTE [39] from classification to regression

by attributing class imbalance from the most predictive SEE feature with the following

procedures. First, Pearson correlation between each feature and effort is calculated, and

the one with the largest correlation is considered to be the most predictive, which is

usually a size-related feature or estimation of completion date or effort such as functional

size and line of codes. Then, the entire training examples are cast into three classes (i.e.

small, medium, and large) with similar amount of data size. For instance, if the functional

size has the largest correlation to the effort with its minimum and maximum being 60 and

780 respectively, the entire data set would be divided into 3 parts according to the feature

value of functional size as [60,300), [300,540) and [540,780). Finally, the conventional

SMOTE was used to generate synthetic projects to small and medium classes to balance

the data distribution. The entire data set size was thus increased. These synthetic projects

together with the real ones were passed to analogy-based estimation method (i.e. k-NN)

for the purpose of getting better prediction performance.

Their experiments showed promising results based on Desharnais data set in terms of

MMRE and Pred(25): their proposed data augmentation approach can play none or some-

times slightly better effect on the baseline model to enhance the prediction performance.

However, no statistical tests were conducted, leaving the significance of performance im-

provement obscure. We suspect that the improvement would be insignificant if taking

statistical tests since the magnitude of the performance superiority was usually very tiny.

19

Despite the fact that the synthetic data generator [93] was designed for k-NN, it can

be easily extended to be used with other SEE methods by treating the data generator

as a data preprocessor. In the thesis, we compare this data augmentation approach with

our proposed approach in term of improving the performance of the baseline SEE models.

Our experiments and analyses showed that our synthetic generator is either significantly

superior to or has no significant difference from the data generator of [93].

2.2 Uncertain Effort Estimation Methods

Few studies have considered the development of automated models that are able to provide

uncertain effort estimation. The existing approaches in SEE can be cast into the following

five categories.

2.2.1 Bootstrap Wrapping

Angelis et al. [9] took the first attempt to provide uncertain effort estimation, where

the authors compared the effort estimation derived from a Bootstrap-based model with

the ones from regression-based methods. However, the method was actually producing

confidence intervals (of the mean effort of training examples) rather than prediction in-

tervals (of testing examples) [81, 10]. Later, Bootstrap resampling was integrated with

a hybrid software model called CoBRA [33] in order to provide PIs for SEE [104]. The

authors wrapped Bootstrap resampling into the CoBRA training process by replacing a

single nominal project of CoBRA with an empirical distribution. To construct CoBRA,

domain experts were asked to decide the causal factors of CoBRA and their possible

values. Experimental results showed realistic uncertainty prediction performance. How-

ever, this method requires intensive human participation in constructing CoBRA and is

very specific to CoBRA. More recently, Laqrichi et al. [118] considered uncertainty when

using ANN for SEE via Bootstrap mechanism. The proposed method generated a prob-

20

ability distribution of point estimates, based on which the PIs can be computed. Their

experimental results showed better point prediction performance compared to traditional

SEE methods based on linear regression, but there was no clear support of good enough

uncertain prediction performance.

The uncertain SEE methods in this category wrap Bootstrap resampling to reproduce

multiple training sets [118] or estimates of model components [104], from which the PIs

can be computed. They are different from our method proposed in chapter 5 in the

following aspects. (1) Base learner: their base learners can only provide point estimation

[9, 118]. In contrast, our method is based on probabilistic estimator, from which the

uncertainty can be retained and calculated automatically leading to ideally more sensible

uncertain estimation. (2) Usage of Bootstrap bags: they use all bags regardless of their

prediction being unreasonable, whereas our method prunes those unreasonable ones.

2.2.2 Empirical Error Probability Consistency Assumption

Jørgensen and Sjøberg [90] proposed and evaluated an uncertan SEE method based on the

assumption that empirical distribution of the estimation accuracy was consistent between

the historical and the future software projects. Its implementation can be found in the

third subsection of section 5.3.4. Comparing their method with a regression-based method

and a human-based method showed that different methods performed well in some data

while failed in others. Another work [28] with the same assumption was proposed later,

but aims to produce CIs rather than PIs.

The uncertain SEE methods in this category assume that the estimation accuracy

of earlier software projects predicts the uncertainty of future testing software projects.

However, when this is not the case, the results are misleading. In contrast, the source of

uncertainty of our method proposed in chapter 5 is assumed to originate from the Gaussian

noise of effort values, which lays its foundation on central limit theorem [145], stating that

21

the summation of several independent random processes tends to a normal distribution

even if the original variables themselves are not normally distributed. Considering the

errors/noises that generate model uncertainty as random variables, their overall effect is

reasonable to be simulated by a Gaussian distribution. However, this assumption still has

problem for disregarding the fact that effort values have to be positive. Better performance

can be expected with more proper noise assumption. More discussions can be found in

the last subsection of section 5.7.2.

2.2.3 Categorical Conversion

Sentas et al. [161, 162] employed ordinal regression to classify a new project into an effort

category (e.g. low, nominal, or high). The completed software projects were required

to predefine the effort categories based on the expert judgement. The point estimate of

a testing example was the mean/median of the effort values in this category the testing

example falls in. Bibi et al. [23] performed experimental comparisons between the models

producing point and interval estimation, but found no general conclusions as the best

performed method could behave relatively bad depending on the data set. Later, Bakir et

al. [17] applied clustering method to automatically define the effort categories. Its main

contribution was the removal of human intervention in predefining the effort intervals.

The uncertain SEE approaches in this category have the following problems: (1) The

performance of the uncertain prediction heavily relies on the goodness of the predefined

intervals. (2) They suffer inferior point prediction performance as they simply use median

or mean of the categorical intervals for the corresponding point estimation. (3) The inter-

val and point estimation would be exactly the same for all projects in the same category,

which may be improper and highly limit the representativeness of effort estimation. (4) It

is hard to interpret the category intervals and the confidence on these interval prediction

is not provided.

22

Mensah et al. [129] provided an advanced method that automatically determined the

categorical intervals. Their method provided duplex outputs for a testing example: one

for the effort estimation as done in most SEE studies and one for the effort level (high,

moderate or low) for interpretation purpose. It categorized the effort values of the training

examples into high, moderate, and low according to the density quantile function. The

obtained effort of a testing example would be subsequently assigned to one of these levels.

This method allows practitioners for better interpretation of the estimated effort.

Both our method proposed in chapter 5 and Mensah et al.’s method in [129] can provide

additional information for the testing example helping the project managers for better

decision making. However, they mainly differ in the catering problems and the types of

information provided. Mensah et al.’s method aims to improve the interpretability of the

point effort estimates and thus provides duplex outputs: one for the point estimation and

the other for its high/moderate/low level; however, our method aims to cater the inherent

uncertainty within the SEE data and to support the project managers in their decision

making by providing PIs.

2.2.4 Uncertain Prediction from Bayesian Inference

RVM is a Bayesian regression model that can provide uncertain prediction as discussed

in appendix A.2. As a contribution of the thesis, chapter 4 will investigate its point

prediction performance in the context of SEE and provide a simple way of constructing

PIs with CLs. The construction of PIs based on RVM is also novel to the thesis and no

such description has been discussed explicitly in ML community. Specifically, based on

the properties of the Gaussian distribution that is derived by RVM, we can present the

PI with any CL α ∈ (0, 1) by using the Cumulative Distribution Function (CDF) of the

derived Gaussian effort estimation.

There are some other methods based on Bayes’ Theorems [45, 175, 149, 128] to infer

23

uncertain effort estimation. However, these methods do not aim to and cannot provide PIs,

and is thus out of the scope of the thesis. In the thesis, we aim to improve the performance

of RVM-based uncertain methods in terms of a narrower and more informative PI and at

the same time maintain or improve the point prediction performance.

2.2.5 Other Methods Optimizing Uncertainty

Sarro et. al. [159] proposed a bi-objective SEE approach to optimise the accuracy of the

point prediction performance and the uncertainty associated with the estimation model

simultaneously. However, it cannot provide uncertain estimate, and is thus out of the

scope of the thesis.

2.3 Parameter Settings for SEE Methods

By the publication of [169], there had been little work on quantifying the impact of

different parameter settings on the performance of model-based SEE methods, and the

methodologies used to choose parameter settings were frequently omitted from the exper-

imental framework of SEE papers [136].

Early concerns of a proper representation of parameter settings came from Minku

and Yao [136] and Menzies and Shepperd [134]. Minku and Yao [136] emphasized the

importance of explaining clearly how the parameters were chosen involving comparisons

of different SEE approaches, as they may have significant influence in the obtained con-

clusions. Menzies and Shepperd [134] also expressed concern regarding the effect that

spending more time tuning one approach than another may cause different conclusions of

their performance superiority. However, these studies did not provide an analysis of the

impact that different parameter settings can have in SEE.

There have been few studies analyse the impact of different parameter settings on

model-based SEE methods. In 2012, Dejaeger et al. [49] performed a comparison of

24

several model-based SEE methods: some adopted their default parameters, one (k-NN)

was directly included in the analysis using four different parameter choices, and the others

were tuned by a validation procedure. Their analyses revealed that the different values

of k in k-NN did not significantly affect k-NN’s performance. However, the impact of

parameter settings of the other approaches was not analysed. In 2013, Kocaguneli et

al. [112] performed an analysis on the effect of different kernel functions and bandwidth

parameters in an analogy-based effort estimator through kernel methods. They concluded

that these parameters did not affect the performance of the approach significantly. In

2017 after the publication of our paper [169], Hosni et al. [73] investigated the impact

of parameter settings for heterogeneous ensemble methods using grid search optimization

and particle swarm algorithms. Their results showed that heterogeneous ensembles based

on optimized base learners provided better performance and the two tuning techniques

generated ensembles with the same predictive capability.

There have been a few meta-heuristic algorithms applied to tune parameters of SEE

models, especially for COCOMO-related models [6, 166, 158, 152, 117]. Evolutionary

computation techniques such as differential evolution [6] and genetic algorithms [166,

147, 5, 65, 158] have been used as a general tuning approach for SEE models. Swarm

intelligence based techniques, including particle swarm optimization [152, 117] and bee

colony optimization [96], have also been used to tune the model parameters in SEE. The

experimental results showed better (and sometimes significantly better) performance with

the optimal parameter settings than the default ones. However, none of the above studies

aimed to investigate the impact of parameter settings on the prediction performance of

SEE models systematically.

A few comprehensive studies of the impact of parameter settings can be found in gen-

eral software engineering areas. For instance, Arcuri and Fraser [11] performed a analysis

of parameter settings in the field of test data generation using genetic algorithms. Their

25

analysis showed that parameter tuning had critical impact on algorithmic performance,

and that overfitting of parameter tuning was a serious threat to external validity of empir-

ical analysis in search based software engineering. In 2016, Tantithamthavorn et al. [176]

investigated the performance of several popular defect prediction models by applying an

automated parameter optimization technique. Their analyses showed that parameter set-

tings had a large impact on the performance of defect prediction models, suggesting that

researchers should pay attention to the parameter tuning of the classification techniques.

Overall, the impact of parameter settings of model-based SEE methods, including

those that have been shown to obtain relatively good performance, was unknown [169].

A study analysing the sensitivity of the popular model-based SEE methods to their pa-

rameter settings would be important to provoke formal report of the experimental design

and for a more informed choice of what SEE approach to adopt. This motivates our work

[169] in investigating the sensitivity to parameter settings for SEE methods.

2.4 Performance Evaluation of SEE Methods

Consider a testing set of T project examples,

DT = {xi, yi}Ti=1 (2.1)

where xi ∈ RD is the ith testing example, and yi is the actual effort for developing this

software project. Note that unlike the training set of Eq. (A.1), the testing set is denoted

by lower subscripts. It is to retain a simple notation when measuring prediction error.

The framework for evaluation of SEE models consist of the description of SEE data sets

together with the preprocessing procedures on each data set, the performance metrics in

terms of both point and interval effort estimation based on the testing set DT , and the

statistical approaches for evaluating models across multiple data sets.

26

Table 2.1: SEE data sets investigated in the thesis.

Repository Name #(Project) #(feature)

SEACRAFT

Maxwell 62 23
Kitchenham 145 3
Cocomo81 63 17

Nasa93 93 17
Desharnais 81 8
Albrecht 24 7
Kemerer 16 6

ISBSG

Org1 76 3
Org2 32 3
Org3 162 3
Org4 122 3
Org5 21 3
Org6 22 3
Org7 21 3

2.4.1 SEE Data Sets

The experimental results in the thesis are based on several data sets from the Software

Engineering Artifacts Can Really Assist Future Tasks (SEACRAFT) Repository [130]1

and from the International Software Benchmarking Standards Group (ISBSG) Repository

Release 10 [77]. We choose these data sets to cover a wide range of features, such as number

of projects, type of features, countries and companies. Table 2.1 contains an overall

description of the data sets. This section provides detailed description and explanation

on their preprocessing procedures.

SEACRAFT Repository

The SEACRAFT data sets used in the thesis include Maxwell, Kitchenham, Cocomo81

and Nasa93.

Maxwell [52] was first presented in [127] for illustration of linear regression models

in SEE, and then described in [162] for ordinal regression models. It contains 62 projects

from one of the biggest commercial banks in Finland, covering the years from 1985 to 1993
1The repository was previously called PROMISE [133].

27

and both in-house and outsourced development. The following steps were performed to

process this data set for use in the thesis:

1. Features: Remove the input features start year (syear) and duration (duration =

syear−1985+1). Start year was removed since my thesis mainly targeted the offline

scenario (rather than the online), which was thus an irrelevant feature. Previous

work [162] followed the same the preprocessing. Duration was removed because we

usually could not know the project delivery time in reality during effort prediction

process. This preprocessing resulted in the 23 input features listed in table 2.2.

2. Categorical conversion: The categorical features are converted into numerical val-

ues so that all the investigated methods are applicable on the same data set.

Take development type with categorical values {organic, embedded, semi-detached}

as an example to illustrate our numerical representation for categorical features.

The categorical feature values can be converted as {organic=1,embedded=2, semi-

detached=3}. For SEE methods that handle numerical (ordinal) and categorical fea-

tures separately such as RT and k-NN, the modified Euclidean distance of Eq. (A.17)

is adopted in the thesis. In this way, the ordering of the categorical features has no

impact on distance. For SEE methods that can only handle numerical features such

as RVM, our preprocessing raises ordering information among categorical features

which can be misleading. Other preprocessing method takes ‘dummy variable’ that

uses 0 (1) to indicate the absence (presence) of a categorical feature value. However,

such method can drastically increase the number of features.

3. Normalization: Normalize each of the 23 input features to have zero-mean and

unit-variance as Eq. (A.19). Zero-mean can usually simplify ML methods and unit-

variance of each feature can avoid scalability problem among different features.

4. Missing values: There were no missing values in this data set.

5. Output: The output effort was measured in hours and remained unchanged.

28

Table 2.2: Detailed description of Maxwell features.

ID name description type value

1 App application type categorical

{
information/online service, transaction service,
customer service, management info system,
production control logistics order processing

}
2 Har hardware platform categorical

{
mini computer, multi-platform,
networked, mainframe, PC

}
3 Dba database categorical relational, sequential, other, none
4 Ifc user interface categorical GUI, text user interface
5 Source where developed categorical in-house, outsourced
6 Telonuse Telon use categorical No, Yes

7 Nlan #development languages ordinal
{

1: one language used, 2: two languages used
3: three languages used, 4: four languages used

}
8 T01 customer participation ordinal


1: very low
2: low
3: normal
4: high
5: very high

9 T02 development environment adequacy ordinal
10 T03 staff availability ordinal
11 T04 standards use ordinal
12 T05 methods use ordinal
13 T06 tools use ordinal
14 T07 software’s logical complexity ordinal
15 T08 requirements volatility ordinal
16 T09 quality requirements ordinal
17 T10 efficiency requirements ordinal
18 T11 installation requirements ordinal
19 T12 staff analysis skills ordinal
20 T13 staff application knowledge ordinal
21 T14 staff tool skills ordinal
22 T15 staff team skills ordinal
23 size application size numerical real-valued value

Kitchenham [51] was fully described in [100]. It comprises 145 maintenance and

development projects undertaken between 1994 and 1998 by a single software development

company. The following steps were performed to process this data set for use in the thesis:

1. Features: Remove features project ID, actual start date, actual duration, estimated

completion date, first estimate, and first estimate method. Project ID was removed

because it was irrelevant for training an SEE model. Actual start date was removed

following the same preprocessing as [100]. Completion date together with start date

would give the duration of the project, and duration was removed because it was

considered as a dependent variable. The other features were removed because they

were themselves estimation of completion date or effort, or represent the method

used for such estimation. This preprocessing resulted in the three remaining input

features: adjusted function points, project type and client code listed in table 2.3.

29

Table 2.3: Detailed description of Kitchenham features.

ID name description type value
1 func adjusted functional size numerical continuous
2 proj project type categorical A, C, D, P, Pr, U
3 client client code categorical C1, C2, C3, C4, C5, C6

2. Categorical conversion: The categorical features are converted into numerical values,

for the same reason and with the same method as for Maxwell.

3. Normalization: Normalize each of the three input features to have zero-mean and

unit-variance as Eq. (A.19), for the same reason as for Maxwell.

4. Missing values: Treat missing values using 1-NN imputation method that had shown

to improve SEE [37]. This imputation method is based on k-NN. It first finds the k

most similar complete projects to the target project to be imputed where similarity

is measured by Euclidean distance. After that, the missing values for the feature

are assigned with the same values of their nearest neighbours or determined by vote

counting when k > 1. There were in total ten projects with missing values.

5. Output: The output effort was measured in hours and remained unchanged.

Cocomo81 [26] and Nasa93 [53] follow the COCOMO data format [26], which has

17 input features consisting of 15 cost drivers, lines of code (loc) and the development type.

The detailed description can be found in table 2.4. The data sets were processed to use the

COCOMO numeric values for the cost drivers. Cocomo81 consists of 63 projects analysed

by Boehm to introduce COCOMO [26]. Nasa93 contains 93 Nasa projects developed

between 1970’s and 1980’. The following steps were performed to process this data set for

use in the thesis:

1. Categorical conversion: The categorical features are converted into numerical values,

for the same reason and with the same method as for Maxwell.

2. Normalization: Normalize each of the 17 features to have zero-mean and unit-

variance as Eq. (A.19), for the same reasons as for Maxwell.

30

Table 2.4: Detailed description of COCOMO-format features [26]. The term ‘corr’ denotes
correlation to effort. In particular, ‘U-shape’ means giving programmers either too much
or too little time to develop a system can be detrimental.

ID name description corr type value
1 loc line of codes none numerical continuous

2 dev develop type none categorical
{

organic, embedded
semidetached

}
3 rely required software reliability pos ordinal



1 = very low
2 = low
3 = normal
4 = high
5 = very high
6 = extra high

4 data data base size pos ordinal
5 cplx process complexity pos ordinal
6 time time constraint for CPU pos ordinal
7 stor main memory constraint pos ordinal
8 virt machine volatility pos ordinal
9 turn turnaround time pos ordinal
10 acap analysts capability neg ordinal
11 aexp application experience neg ordinal
12 pcap programmers capability neg ordinal
13 vexp virtual machine experience neg ordinal
14 lexp language experience neg ordinal
15 modp modern programming practices neg ordinal
16 tool use of software tools neg ordinal
17 sced schedule constraint U-shape ordinal

3. Missing values: There were no missing values in these two data sets.

4. Output: The output effort was measured in person-month and remained unchanged.

Desharnais contains 81 projects with 9 features from a Canadian software company.

Four projects contained missing values, so they were excluded from our investigation. The

input feature YearEnd was removed and thus there were 8 features in use, including Team-

Exp, ManagerExp, Transactions, Entities, PointsNonAdjust, Adjustment, PointsAjust and

Language. The categorical features are converted into numerical values, for the same rea-

son and with the same method as for Maxwell. The depended feature effort was recorded

in 1,000 hours and remained unchanged.

Albrecht contains 24 projects developed in IBM using the third generation languages

in the 1970s [4]. There were no categorical features nor missing values in this data set.

Specifically, 18 out of 24 projects were written in COBOL, four were written in PL1,

31

and two were writen in DMS languages. There are 7 input features, including InputFP,

OutputFP, EnquiryFP, FileFP, FPAdj, RawFPcounts, and AdjFP. The dependent effort

was recorded in 1,000 hours and remained unchanged.

Kemerer contains 16 projects with 7 features donated by Dr. Jacky W. Keung in

2010. The input feature project ID was removed since it is irrelevant to the effort predic-

tion. Accordingly, there are 6 input features including language, hardware type, estimated

duration, KSLOC, AdjFP and RawFP. The categorical features (i.e. language and hard-

ware type) are converted into numerical values, for the same reason and with the same

method as for Maxwell.

Note that Desharnais, Albrecht, and Kemerer will only be investigated in chapter 3

(for RQ1 of the thesis) to gain an idea of the prediction performance of SEE methods on

these three data sets. It is because most of their input features are either size-related or

estimation of completion date or effort, which is usually not practical in reality. So we

exclude them in the experiments for answering RQ2, RQ3, and RQ4 of the thesis.

ISBSG Repository

ISBSG release 10 contains a large body of completed software projects (5,052 projects),

covering many different companies, several countries, organisation types, application

types, etc. The data can be used for several different purposes, such as evaluating the ben-

efits of changing a software or hardware development environment, improving practices

and performance, and estimation [77].

First, we preprocessed the ISBSG repository following the same procedures as [136],

resulting in 621 projects, by maintaining only projects with:

• Data and function points quality A (assessed as being sound with nothing being

identified that might affect their integrity) or B (appears sound but there are some

factors which could affect their integrity/integrity cannot be assured).

• Recorded effort that considers only development team.

32

Table 2.5: Groups data sets from ISBSG repository according to organization type. Only
the groups with at least 20 projects were maintained following ISBSG’s guideline.

ID Organisation Type #Projects
1 financial, property & business services 76
2 banking 32
3 communications 162
4 government 122
5 manufacturing, transport & storage 21
6 ordering 22
7 billing 21

Table 2.6: Detailed description of ISBSG features.

ID name description type value
1 func functional size numerical continuous

2 dev development type categorical
{

enhancement, re-development
new development

}
3 lang primary programming language categorical {3GL, 4GL, ApG}

• Normalize effort equal to total recorded effort, meaning that the reported effort is

the actual effort across the whole life cycle.

• Functional sizing method IFPUG version 4+ or NESMA.

• No missing organisation type field.

After that, a set of relevant comparison data sets need to be selected in order to produce

reasonable SEE using ISBSG data. The selected projects were grouped into several ISBSG

data sets according to the organisation type feature [136], and only the groups with at least

20 projects were maintained, following ISBSG’s data set size guidelines. The resulting

organisation types are shown in table 2.5.

Finally, the following steps were performed to these data sets for use in the thesis:

1. Features: ISBSG suggests that the most important criteria for estimation purpose

are the functional size, the development type (new development, enhancement or

re-development), the primary programming language (3GL, 4GL or ApG) and the

development platform (mainframe, midrange or PC). As development platform is

missing in more than 40% of the projects for two organisation types, the remaining

33

three criteria were used as input features listed in table 2.6.
2. Categorical conversion: The categorical features are converted into numerical values,

for the same reason and with the same method as for Maxwell.
3. Normalization: Normalize functional size to have zero-mean and unit-variance as

Eq. (A.19), for the same reason as for Maxwell.
4. Missing values: There were no missing values for the features of functional size and

development type, but language type had missing values across several data sets. For

instance, Org1 had 25 out of 76 projects (about 33%) with their values of language

type missing. We would lose too many data that were potentially useful in improving

and evaluating a model’s performance if we further eliminated those projects [138].

Thus, instead of discarding the projects in which the values of language type were

absent, we treated these missing values by 1-NN imputation method [37], with the

same procedures as in Kitchenham.
5. Output: The output effort was measured in hours and remained unchanged.

2.4.2 Metrics for Point Prediction

There are several performance metrics that implement the loss function in Eq. (1.2) and

can be used for evaluation of point effort estimation. Popular examples are mean/median

magnitude of the relative error, percentage of estimates within N% of actual values, mean

absolute error, logarithmic standard deviation, and standardised accuracy.

Magnitude of Relative Error (MRE) was widely used for SEE [165, 63]. It measures

the error ratio between the actual effort yi and the predicted value ŷi of the testing data

set in Eq. (2.1) as:

MREi = |ŷi − yi|
yi

. (2.2)

The smaller the MREi, the better the prediction performance. A summary of {MREi}

can be derived as the Mean Magnitude of Relative Error (MMRE) or Median Magnitude

of Relative Error (MdMRE) defined respectively as:

34

MMRE = 1
T

∑T
i=1MREi,

MdMAE = median{MRE1, · · · ,MRET}.
(2.3)

There have been some criticisms on this type of metrics. For instance, [101, 63, 142, 164]

showed that MMRE was unreliable since it penalized overestimates more than underes-

timates, and thus was biased towards prediction systems that underestimate effort and

could be misleading. Underestimation (i.e. overoptimism) is the direction of the error

that practitioners are more unwilling to see [88, 86].

Logarithmic Standard Deviation (LSD) is a more reliable percentage-based criterion

than MMRE [63], defined as

LSD =

√√√√∑T
i=1(ri + s2

2)2

T − 1 , (2.4)

where ri = ln yi− ln ŷi, i ∈ {1, · · · , T}, T is the number of testing examples, and s2 is an

estimator of the variance of these residuals {ri}. LSD is an analogy of STD by replacing

(yi − ŷi) with log yi

ŷi
alleviating the influence of large effort values; the rationale of s2 is

to compensate the bias when estimating the model parameter, where effort values in the

logarithm scale and functional point are assumed to be linear [63]. Smaller LSD values

correspond to better prediction performance. LSD is appropriate to evaluate multiplica-

tive models, but it may be inappropriate for comparing additive models [63, 142].

Mean Absolute Error (MAE) has been recommended by Shepperd and MacDonell for

SEE studies, for being a symmetric metric and not biased towards under or overestimation

[164]. It is defined as
MAE =

T∑
i=1
|yi − ŷi|/T. (2.5)

MAE in the logarithm effort scale can also be reported for alleviating the impact of

very large error. It is computed based on the effort values in their logarithm scale (see

chapter 3). Without specified, MAE is calculated based on the original effort scale.

Median Absolute Error (MdAE) is defined as the median value of the prediction residues

35

MdAE = median{|yi − ŷi|, i = 1, · · · , T}. (2.6)
It has shown to be less sensitive than MAE to occasional projects with very large efforts

and is thus a useful addition to MAE [63]. One disadvantage of MAE and MdAE is that

they are difficult to interpret and comparisons cannot be made across data sets since the

residuals/errors are not standardised [164].

Standardised Accuracy (SA) can provide interpretable results [164]. Given T actual

effort values {yi}Ti=1 and their estimates {ŷi}Ti=1 predicted by method P , SA is defined as

SA = 1− MAEP
MAEP0

, (2.7)

where method P0 denotes the random guessing, and MAEP0 is the prediction performance

(measured in MAE) of a large number (typically 1000) runs of random guessing. Esti-

mating ŷi by random guessing P0 is to take ŷi = yr where r is drawn randomly from all

the remaining (T − 1) effort values (i.e. r ∈ {1, · · · , T}∧{r 6= i}) with equal probability.

The value of SA can be interpreted to be how much better P is than random guessing P0.

It gives a good idea of how well the method performs. The larger the ratio, the better

the prediction performance is. A value close to zero is discouraging and a negative value

would be even worse.

Percentage of successful estimation falling within N% of the actual values (Pred(N))

is a common alternative to MMRE and MdMRE, defined as

Pred(N) = 100
N

T∑
i=1


1, if MREi 6 N

100

0, if otherwise.
(2.8)

For instance, Pred(25)=50% means that half of the estimates fall within 25% of the actual

effort values [165]. The larger the percentage, the better the prediction performance is.

One disadvantage of Pred(N) is that it is not analytical, and the testing set should be

large enough for providing a meaningful result.

36

Different performance metrics emphasize different factors and can behave differently

in evaluating SEE methods [135]. It is highly unlikely to exist a single, simple-to-use and

universal goodness-of-fit performance metric for SEE [63]. In practice, practitioners should

choose the performance metrics according to their particular emphasis and interests.

2.4.3 Metrics for Prediction Interval

An effort Prediction Interval (PI) can be considered as a representative form of uncertain

effort estimation, and it comprises a minimum and maximum values between which the

future effort value is expected to lie at a Confidence Level (CL). It is usually associated

to a most likely point estimate. For instance, a project manager may be 95% certain that

the estimated effort of a project will fall between 500 and 2,500 person-hour with the

most likely effort value at 1,500. Confidence Interval (CI) is another uncertainty concept,

which usually refers to the uncertainty associated with the unknown population statistics,

such as the uncertainty of the mean value of an unknown distribution [13, pp.761-824].

For instance, a project manager may be 95% certain that the mean effort of all developed

software projects is 1,500 person-month. Overall, PIs are related with an unknown project

to be predicted, while CIs are connected with the mean effort of existing projects. In the

thesis, we are more interested in providing PIs with CLs for an unknown project.

PIs with CLs allow for risk management and provide more flexibility to project man-

agers. For instance, when bidding for a project, if the competition is very fierce the project

manager can report a lower price within the interval to enhance the winning chances; on

the contrary, when the competition is less fierce, he/she can propose a higher price for

bringing more profit to the organization. The performance of the PIs with CLs is typically

measured by the following two metrics.

Hit rate is the most commonly used evaluation metric for PIs [104, 84, 104]. The

underlying idea is that: if PIs with CLα are evaluated by T software projects, it is expected

37

that around α× T projects have actual efforts falling inside the corresponding predicted

PIs. The hit rate can be calculated by first counting the number of projects whose efforts

are within the PIs, and then dividing that by the total number of projects. When the

number of testing examples is sufficiently large, the obtained hit rate should be around

the chosen CL: when the hit rate is higher, the estimated PIs are too wide; otherwise, the

estimated PIs are too narrow. However, we should note that due to the small SEE data

sets, we usually do not have sufficient testing examples. Hence, hit rate may deviate from

its corresponding CL although the two values should be very close in essence.

In practice, the hit rates that are either equivalent to or greater than their CLs are

considered to be satisfactory. When the hit rates are smaller than their CLs, the method

fails in terms of hit rate and smaller values represent worse performance. When the hit

rates are equal or greater than their CLs, the performance is satisfactory and succeeds in

terms of hit rate. If the hit rates usually surpasses their CLs, it means that this method

can be further improved by having more informative PIs. In formula, the loss function of

hit rate is defined as

L (h) =


cl − h, cl > h

0, cl 6 h
(2.9)

where h denotes the actual hit rate and cl is the corresponding CL. When the hit rate

equals to or surpasses its CL, the loss is zero; when the hit rate is lower than its CL, the

loss equals to their difference.

Relative width is another useful performance metric for the PIs [91]. The underlying

idea is that: of two sets of PIs with similar hit rates, the set with the narrower intervals

is more informative and indicative for a higher level of expertise or more efficient use of

the uncertainty information than the wider intervals. For example, a person who is only

guessing may end up with an adequate hit rate, but his/her 90% PIs are extremely wide

and thus of little practical use.

38

To compare PIs of different magnitudes, the relative width of a PI is defined as

rWidth = upB − lowB
|Est|

, (2.10)

where upB/lowB denotes the upper/lower bound of the PI, and Est is the most likely

point estimation. The overall performance of uncertain prediction is measured by the

average relative width across all testing examples.

Larger hit rate may associate to a worse PI, whereas lower hit rate may associate to

a better PI. Therefore, if two methods have different hit rates, their relative widths are

not comparable. Conversely, if two methods have the same hit rate, we can say that the

one providing the narrowest relative width is more informative.

2.5 Summary and Discussion

There have been loads of SEE literature proposing point effort estimation methods (see

appendix A). However, most of them do not tackle the three issues in SEE: data scarcity,

data noise, and sensitivity to model parameters. Hence, we reviewed the literature that

investigated synthetic data generation to tackle the small data problem, uncertain SEE

methods to cater the effort noise problem, and the sensitivity to parameter settings.

As discussed in section 2.1, Kamei et al.’s [93] has been the only synthetic data genera-

tor in SEE prior to ours in chapter 3. Their method extended SMOTE from classification

to regression by attributing class imbalance from the most predictive input feature. How-

ever, their experimental results showed similar and sometimes slightly better prediction

performance than the baseline k-NN and no statistical tests were taken, leaving the sig-

nificance of performance improvement obscure. Therefore, it is essential to evaluate their

data generator based on statistical tests. If no significant superiority over the baseline can

be detected, a novel synthetic generator that plays no worse and sometimes significantly

better impact on the prediction performance of the base models is demanding.

39

As discussed in section 2.2, there have been a few studies providing uncertain effort

estimation to cater effort noise. They can be mainly cast into four categories: Bootstrap

wrapping (section 2.2.1), empirical error probability consistency (section 2.2.2), categorical

conversion (section 2.2.3), and Bayesian inference (section 2.2.4). However, most of the

uncertain methods had not been thoroughly evaluated in terms of uncertain prediction

performance and no comparisons among them had been conducted. Therefore, a thorough

experimental comparison on their point/uncertain prediction performance is needed.

As discussed in section 2.3, there have been few studies that analyse the impact of

parameter settings to their (point) prediction performance. Previous studies mainly fo-

cused on proposing parameter tuning approaches for COCOMO-related models based on

meta-heuristic algorithms. Therefore, a study that analyses the sensitivity to parameter

settings of SEE methods is demanding.

This chapter also presents the performance evaluation for SEE methods in section 2.4,

which includes SEE data sets and their preprocessing procedures in section 2.4.1 and per-

formance metrics of point and uncertain prediction in sections 2.4.2 and 2.4.3 respectively.

More discussion on the statistical tests for validating the significance of performance dif-

ference in terms of point prediction of SEE methods can be found in appendix B.

40

CHAPTER 3

A Synthetic Project Generation Approach for SEE

3.1 Introduction

The collection of completed software projects may require considerable amount of time and

workload [106, 107, 116]. Consequently, companies usually have limited training examples

to construct SEE models, causing unsatisfactory prediction performance. SEE literature

has frequently attempted to tackle this problem by creating advanced SEE methods that

are suitable for small training set [116, 136, 109]. Rather than that, we can augment SEE

data set by generating synthetic projects. The data generator can provide an alternative

and much cheaper way to address the data scarcity problem. However, there have been

few SEE studies investigating this strategy to assist such learning.

This chapter aims to address the data scarcity problem of SEE by answering the first

research question of the thesis:

RQ1. Can we generate synthetic software projects to enlarge the training set

size for obtaining better prediction performance? If so, how?

The proposed data augmentation approach should be general so that it can be used
0This chapter corresponds to RQ1 in section 1.1.1, and is based on our published paper [171].

41

with any SEE method. Ideally, it should hardly have negative effect on the baseline

performance that does not use synthetic projects.

To answer RQ1, we propose a synthetic project generator that can be used as a pre-

processor and encoded with any SEE method. Our approach produces synthetic projects

by slightly displacing the completed software projects that are chosen randomly, each as-

sociated with one training example. Though the synthetic projects are not ‘real’ software

data, they can enrich the representativeness of the area they are generated and potentially

improve the prediction performance.

Given an SEE method, the first research question of the thesis can be further divided

into the following sub-research questions:

• RQ1.1: Can our synthetic data generator help improve prediction performance over

the baseline that does not use synthetic projects? When? Could it be detrimental?

• RQ1.2: If our synthetic projects are helpful for prediction performance, why are

they helpful? If they are detrimental, why are they detrimental?

• RQ1.3: How well does our data generator perform compared to other data generators

in SEE literature?

The main contribution of this chapter is the proposal of a data augmentation approach

and the answers to RQs 1.1∼1.3. Especially, we provide the understanding of when and

why our synthetic projects can help improve the baseline performance that does not use

our synthetic projects.

The remaining of this chapter is organised as follows. Section 3.2 proposes our

synthetic project generation approach, including synthetic feature generation in subsec-

tion 3.2.1 and synthetic effort generation in subsection 3.2.2. Section 3.3 presents the

experimental design to evaluate the effectiveness of our synthetic data generator. Exper-

imental results are discussed in section 3.4. This chapter is summarized in section 3.5.

42

3.2 Our Synthetic Data Generator

Different from the data generator in SEE literature [93], where a synthetic project was

generated by a combination of two existing projects, our approach produces a synthetic

project by displacing one existing project that is randomly selected.

As outlined in section 1.2.3, consider a training set of N software projects:

D = {(xn, yn)}Nn=1, (3.1)

where an input vector xn ∈ RD includes software features such as software development

type, team expertise and functional size, and yn ∈ R1 is the actual effort for developing this

software. Our synthetic data generator will produce dγNe synthetic projects to augment

the training set and tackle the data scarcity problem of SEE, where γ is the synthetic

rate and d·e denotes the upward rounding operator (e.g. d1.4e = 2). The synthetic rate γ

should be small enough not to hinder the information provided by the real project, but

large enough to be helpful. In the thesis, γ is chosen from {0.25, 0.5, 0.75, 1} as shown in

table 3.2. Ultimately, our approach will generate M = dγNe synthetic projects, each of

which consists of two steps: synthetic feature generation and synthetic effort generation.

3.2.1 Synthetic Feature Generation

SEE features can be categorized into three classes according to the types of feature values:

(1) categorical features with discrete nominal values such as enhancement, re-development

and new development for software development type, (2) ordinal features with discrete

ordinal values such as very low, low, normal and high for team expertise, and (3) numerical

features with continuous values such as functional size and line of codes.

Given a randomly chosen training example x ∈ D , a synthetic project x(syn) is gen-

erated feature-by-feature by displacing the training features individually. The generation

approach varies depending on the types of feature values as follows.

43

Synthetic Categorical Feature Generation

For a categorical feature xc ∈ x with k values {vc1, · · · , vck}, our approach will generate

its synthetic counterpart x(syn)
c by uniformly sampling a new categorical value from the

set {vc1, · · · , vck}\{vc,xc}, where vc,xc denotes the categorical feature value of the chosen

training project.

We assign a parameter τ ∈ [0, 1) to the synthetic categorical feature generation, such

that with probability (1−τ) the synthetic feature retains to be vc,xc , and with probability

τ the synthetic feature randomly takes a value from {vc1, · · · , vck}\{vc,xc} having the same

probability for each value to be taken. The process can be formulated as

x(syn)
c =


vc,xc if τ < η 6 1

∼ U({vc1, · · · , vck}\{vc,xc}) if 0 6 η 6 τ
(3.2)

where η is a random variable uniformly taken from [0,1], and U({· · · }) denotes a discrete

uniform distribution function. To retain a moderate shift on the synthetic feature, we

adopt small changing probability τ as listed in table 3.2.

Taking the categorical feature development type with the feature values of enhance-

ment, re-development, and new development as an example, if the training example is

re-developed, the synthetic feature will stay the same with probability 1 − τ , or be uni-

formly chosen from {enhancement, new development} with probability τ .

Synthetic Ordinal Feature Generation

For an ordinal feature xo ∈ x with k values {vo1, · · · , vok} where voi 6 voj for 1 6 i 6 j 6

k, our approach generates the synthetic x(syn)
o according to Binomial distribution.

Binomial distribution B(n, p) is frequently used to model the number of successes in

a sequence of n independent experiments, each of which succeeds with probability p and

fails with probability (1 − p) [184, 27]. For a Binomial random variable ξ ∼ B(n, p),

its expectation satisfies E[ξ] = np. Binomial distribution is suitable for ordinal feature

44

modelling since it can manifest the ordered relationship between discrete feature values.

Figure 3.1(a) illustrates the histogram of a Binomial distribution B(n = 10, p = 1/5).

We take an example to demonstrate our procedures in deciding Binomial distribution

of a training project. Given an ordinal feature team expertise with values of 1=very low,

2=low, 3=normal and 4=high, if the team expertise of the training example is 3=normal,

the synthetic feature should have the highest chance for 3=normal, the second highest

and the same chance for 4=high and 2=low, and the lowest chance for 1=very low. To

guarantee the expectation to be 3=normal, Binomial parameters should satisfy n · p = 3.

To guarantee the same chance for 2=low and 4=high, p should be 1/2. Taking the two

equations together, Binomial distribution of the ordinal feature is B(n = 6, p = 1/2).

Figure 3.1(b) shows a solution of Binomial distribution for team expertise. To retain

3=normal situating at the distribution centre, three dummy values are added.

Then, a synthetic ordinal feature is sampled from Binomial distribution B(n = 6, p =

1/2). If we get a dummy value, resume the sampling process until acquiring a valid feature

value. The process can be formulated as

x(syn)
o ∼ B(n = 2 · vo,xo , p = 1/2), (3.3)

where vo,xo is the ordinal feature value of the training example.

Synthetic Numerical Feature Generation

For a numerical feature xf ∈ x with continuous values xf ∈ R1, our proposed approach

will generate its synthetic counterpart x(syn)
f by adding a zero-mean Gaussian variable

ε ∈ N (0, σ2) to its baseline value xf as

x
(syn)
f = xf + εf , εf ∼ N (0, σ2). (3.4)

Usually the numerical SEE features are size-related such as functional point or estimation

of completed effort such as line of code.

45

(a) Binomial distribution B(n=10, p=1/5). (b) Synthetic team expertise.

Figure 3.1: Binomial distribution and its ordinal feature modelling. Figure 3.1(a) shows the
PDF of a Binomial distribution, and figure 3.1(b) illustrates the Binomial modelling for the
ordinal feature team expertise.

In this work, we normalize each numerical feature to have zero-mean and unit-variance

as Eq. (A.19) and assign Gaussian σ2 with small values {0.1, 0.2, 0.3} as shown in table 3.2

to restrict the impact of Gaussian displacement.

3.2.2 Synthetic Effort Generation

Denote y as the actual effort of a training example x, the aim of synthetic effort generation

is to assign a proper value y(syn) to the synthetic feature x(syn).

Similar to the numerical feature generation, our approach assigns the synthetic effort

by adding a zero-mean Gaussian variable ε ∼ N (0, σ′2) to its baseline effort value as

y(syn) = y + sign(εf) · |ε|, ε ∼ N (0, σ′2), (3.5)

where sign(εf) is the positive/negative sign of the Gaussian distributed numerical feature

in Eq. (3.4). When there are more than one numerical features, εf is their summation.

By doing so, (y(syn) − y) and (x(syn)
f − xf) can have the same increasing/decreasing

direction, catering the well-known fact that numerical size-related features are positively

correlated with effort values [122, 40]. In this work, we confine σ′ = σ for simplicity. Ex-

ploration of a separate parameter σ′ can be conducted in future. The proposed synthetic

generator is summarized in algorithm 2.

46

Algorithm 2 Our synthetic project generator.
1: Input: (1) Training data set D = {(xn, yn)}Nn=1, (2) synthetic rate γ, (3) synthetic categor-

ical feature parameter τ , and (4) Gauss variance σ2 of synthetic numerical feature.

2: Aim: Generate M = dγNe synthetic projects {(xm,(syn), ym,(syn))}Mm=1 based on D .

3: Procedures:
4: (1) Randomly choose a training example x ∈ D .
5: Synthetic feature generation.
6: (2) For each categorical feature xc ∈ x, generate its synthetic counterpart x(syn)

c according
to a discrete uniform distribution as Eq. (3.2).

7: (3) For each ordinal feature xo ∈ x, generate its synthetic counterpart x(syn)
o according to

a Binomial distribution B(n, p) as Eq. (3.3).
8: (4) For each numerical feature xf ∈ x, generate its synthetic counterpart x(syn)

f by adding
a zero-mean Gaussian variable as Eq. (3.4).

9: Synthetic effort generation.
10: (5) Assign synthetic effort y(syn) by adding a zero-mean Gaussian variable with the same

increasing/decreasing direction as the numerical features to y as Eq. (3.5).
11: Loop.
12: (6) Repeat steps (1)∼(5) until M synthetic projects are generated.

13: Output: M synthetic projects {(xm,(syn), ym,(syn))}Mm=1.

3.2.3 Further Discussion on Our Data Generator

There are a few problems that may hinder the effectiveness of our data generator:

(1) Our ordinal/categorical feature modelling may not fit reality perfectly. For instance,

a newly developed software project would be more likely to be enhanced rather than re-

developed; employees with normal expertise would be more likely to evolve with high

rather than low expertise. Therefore, it would be interesting to study whether other non-

symmetric distributive modellings of ordinal/categorical features would further improve

prediction performance. This would depend on expert knowledge of the data distribution.

(2) Our approach assumes that synthetic effort values are only affected by the change in

numerical features. Assigning synthetic effort from the changes of ordinal/categorical fea-

tures is very challenging, requiring expert knowledge or data analyses with large training

sets. This is potentially a harder problem than SEE itself. Moreover, changing some or-

47

dinal/categorical features would increase the effort, whereas changing some others would

decrease it. Altogether, this would cause small variations in effort. Since our strategy had

achieved good results, we did not investigate the impact of changing categorical/ordinal

features on synthetic effort. Nevertheless, it is an interesting research direction.

In summary, our data augmentation approach generates synthetic projects individu-

ally, each of which is based on slight displacement of one training example that is chosen

randomly. Thus, the synthetic projects can only impact the local areas they are gener-

ated. Besides, our synthetic data generator is data-driven and does not depend on any

SEE method. Thus, it can be used as a preprocessor with any SEE model.

3.3 Experimental Design

This section presents our experimental design to justify the effectiveness of the proposed

data generator, including the data sets and the preprocessing procedures on them, the

evaluation strategies for prediction performance, the baseline SEE methods and their

parameter settings.

3.3.1 Data Sets

The analyses in this chapter is based on 14 data sets from the SEACRAFT Repository

[130] and the ISBSG Repository Release 10 [77]. Seven data sets including Maxwell, Co-

como81, Nasa93, Albrecht, Kemerer, Desharnais, and Kitchenham, are from SEACRAFT

repository; Seven data sets, namely Org1∼Org7, are the subsets of ISBSG being grouped

according to organization type as table 2.5. Section 2.4.1 describes these data sets and

the basic preprocessing procedures on them. As explained in section 2.4.1, Desharnais,

Albrecht, and Kemerer are only investigated in this chapter to gain an idea of their SEE

performance. It is because most of their input features are either size-related or estimation

of completion date or effort, being not practical in reality.

48

Table 3.1: SEE data sets that are cast into 3 groups representing small, medium and large
data set sizes according to the ratio of the data number over the feature number. Three
sets of holdout values are assigned to three groups of data sets respectively.

Size Data set #Fea #Data #Fea/#Data Small Medium Large

Small

Maxwell 23 62 2.70

0.3 0.7 LOO
Cocomo81 17 63 3.71

Nasa93 17 93 5.47
Albrecht 7 24 3.43
Kemerer 6 16 2.67

Medium

Desharnais 8 77 9.63

0.1 0.3 0.7
Org2 3 32 10.67
Org5 3 21 7.00
Org6 1 22 22.00
Org7 1 20 20.00

Large

Kitchenham 3 145 48.33

0.04 0.08 0.7Org1 3 76 25.33
Org3 3 162 54.00
Org4 3 122 40.67

To investigate the effect of training set size, SEE data sets are grouped into small,

medium, and large according to the ratio of the number of data over the number of

features. Note that all projects of Org6 had the same development type and programming

language, so functional size was used as a single feature. In Org7, all projects had the same

development type and programming language with only one exception. This exception was

removed, resulting in 20 projects with a single input feature. Table 3.1 contains the basic

description of the investigated data sets in this chapter.

Data preprocessing. For each data set in table 3.1, we apply the logarithm to the

numerical features making them less skewed and more Gaussian distributed. Exponen-

tial distributions of numeric features are often observed in defect and effort prediction

data sets, which are usually composed of many small values combined with a few much

larger values [132, 173]. Logarithm preprocessor has shown to be non-harmful to or even

sometimes improve the performance of the defect prediction [132, 173]. Therefore, all

numeric features are replaced with their natural logarithm values in this chapter. This

preprocessing also minimizes the effect of the occasional very large feature values. The

49

dependent effort values are also converted into their logarithm scale to make the effort

distribution more Gaussian. This procedure can alleviate the prediction problem when

treating testing examples with very large effort (section 2.4.2).

3.3.2 Performance Evaluation

The performance metric used in this chapter is MAE defined as

T∑
i=1

|yi − ŷi|
T

, (3.6)

where yi/ŷi denotes the actual/predicted effort of the ith testing data from DT , and T is

the number of testing data. MAE was recommended by Shepperd and MacDonell in SEE

for being a symmetric measure not bias towards under- or overestimation [164]. As the

effort is in their logarithm scale, MAE becomes less affected by the project size.

There are three typical approaches of data partition to evaluate the prediction per-

formance [69]: holdout [115], k-fold cross-validation (CV) [69], and leave-one-out (LOO)

[69, 108]. Holdout keeps a certain percentage p out of the entire data set as the training

set, and the model will be evaluated on the remaining testing data. The larger the p, the

more training examples used for model construction. The k-fold CV partitions the entire

data set into k subsets, each of which is used once to validate the model performance and

the rest data samples are used to train the predictor. LOO is a special case of k-fold CV

when the number of folds equals to the number of data samples.

In this chapter, we apply holdout evaluation to control the training set size deliberately

and validate the proposed data generator by investigating the impact of synthetic projects

when the training set size is small, medium, and large respectively. We first randomly

split the data set into training and test subsets. Each SEE method is constructed from

the training set and its performance is evaluated from the testing set. This process is

repeated 30 times and the average MAE is reported.

50

When we are in a data-rich situation, the best way to evaluate an SEE method is to

randomly divide the entire data set into 3 parts: a training set, a validation set and a

testing set. The training set is used to fit the model, the validation set is used to choose the

optimal model parameters, and the testing set is used to evaluate the model performance.

However, SEE data sets are usually very small. Taking a separate testing set will result

in an even smaller number of examples for training and validating (model selection). A

small validation set may not be able to find the optimal model parameters, failing to

evaluate the method with its best capability. A small testing set may not represent the

data space very well, possibly causing invalid evaluation of SEE methods. Therefore, we

use no separate testing sets in the thesis. This experimental setting is also consistent to

many previous SEE studies [109, 111, 169, 170].

3.3.3 Baseline SEE Methods

To evaluate the effectiveness of our data generator, we investigate six SEE methods: Mul-

tivariate Linear Regression (MLR), Automatically Transformed Linear Model (ATLM),

k-Nearest Neighbours (k-NN), Relevance Vector Machine (RVM), Regression Tree (RT),

and Support Vector Regression (SVR). Please refer to appendix A for basic description

of these methods.

MLR and ATLM [188] are chosen because they have been shown to be good baselines

after appropriate data transformations [188, 99]. R.matlab package [22] was used to

configure the R implementation of ATLM into the MATLAB framework. Note that

sometimes the estimates from ATLM can be NaN (Not A Number), which may be caused

by the automatic transformation on input features. When this happened, we use the

prediction of MLR to replace those NaNs.

K-NN is chosen for being among the simplest SEE method and due to its intuitive

interpretation that mimics the human decision-making [169, 165, 122, 114]. Some studies

51

have showed that k-NN is comparable and sometimes superior to other SEE methods

[165, 87, 122, 9, 114]. To predict the effort of a testing project, the distance of the project

to all training examples are computed in terms of Euclidean distance in Eq. (A.17). Based

on them, k nearest neighbours to the testing project are determined, and their median

effort value is returned as the estimate effort value [111].

RVM is chosen because it has been shown to be very competitive to other state-of-the-

art SEE methods [170, 177, 59]. In RVM, each training data is associated with one basis

function, measuring the distance of this training project to the testing project. There are

several choices for the basis function. We employ non-normalized Gaussian kernel

φj(x) = exp{−(x− µj)2/(2s2)}

to be our basis function for its locality property [136], where the µj is the j-th training

example and the width s controls their spatial scale.

RT is chosen for being among the most frequently used SEE methods which has

presented potential advantage for SEE [136, 187]. RT is a rule-based, hierarchical model

where software data features are used to split projects into to small groups and this process

is recursively repeated to form a regression tree [136].

SVR is designed for small data problem [55], which seems suitable for SEE. However,

SVR has not been popularly used in the SEE community partially because of the con-

tradictory conclusions drawn from previous studies [160, 146, 7, 41]. Some claimed its

superior performance in SEE [146, 160, 41], while others claimed inferior performance of

SVR compared with other SEE methods [7]. There are several choices for SVR kernel.

We use linear kernel for having been shown to be a better choice [146].

Each of these SEE methods will be used as a baseline to investigate whether or not

the generated synthetic projects can improve their prediction performance. SEE methods

in the chapter are implemented in MATLAB and specified if otherwise.

52

Table 3.2: Parameter values of the SEE methods investigated.

ID Method Parameters
1 MLR No tuning parameter
2 ATLM No tuning parameter
3 k-NN k (#neighbour) = {1,2,3,5}
4 RVM s (width) = 0.1 : 0.5 : 10 (#=20)

5 RTs
L (max tree depth) = {-1, 2, 6}
M (min #node per leaf) = {1, 2, 4}
E (stopping error) = {0.0001, 0.01, 0.5}

6 SVR
kernel = ‘linear’
C (regularization) = {0.01, 0.1, 1, 10 }
ε (slack variables) = {0.1, 0.3, 0.5, 1}

7 syn.our
γ (synRate) = {0.25,0.5,0.75,1}
τ (categorical) = {0,0.2,0.4}
σ2 (GaussVar) = {0.1,0.2,0.3}

8 syn.cmp k (neighbours in SMOTE) = {1,2,3,5}

3.3.4 Parameter Settings

The parameter values of the SEE methods investigated in this chapter are listed in Ta-

ble 3.2. For RT, the maximum tree depth of -1 means unlimited tree depth. For SVR, we

use the conventional settings for regularization parameter C and slack variable ε [41, 140].

For the models that have more than one parameters, we investigate all possible parameter

settings. Our discussion is based on the performance with the best parameter settings.

3.4 Experimental Result and Discussion

This section evaluates our synthetic data generator by comparing the performance of

SEE methods with and without the generated synthetic projects. The performance of

an SEE method that does not use our synthetic projects is denoted as bsl.SEEr, and the

performance of an SEE method that uses our synthetic projects is denoted as syn.SEEr.

Moreover, section 3.4.3 compares our synthetic generator against its only competitor in

SEE literature [93]. The performance of an SEE method that uses Kamei et al.’s [93]

synthetic projects is represented by syn.cmp.SEEr.

53

3.4.1 Effect of Synthetic Data on Prediction Performance

This subsection aims to answer RQ1.1 presented in section 3.1: Given an effort model,

can our synthetic data generator help improve prediction performance over the baseline

that does not use synthetic data? When? Could it be detrimental? To answer RQ3.1, we

investigate the effect of our synthetic projects by comparing the performance of syn.SEEr

against bsl.SEEr across 14 data sets with small, medium and large training sizes respec-

tively. Table 3.3 lists the performance comparisons in all data set sizes. We can see that

our synthetic projects can usually improve the prediction performance.

To investigate whether the improvement is significant, the effect size between syn.SEEr

and bsl.SEEr across 30 runs of each data set is checked. In this chapter, we adopt the

non-parametric effect size A12 that makes no assumptions about the underlying distri-

bution [183, 12]. In table 3.3, large/medium/small effect size is highlighted in orange

bold/yellow bold/bold indicating the performance improvement of using our synthetic

projects. Detailed description on effect size can be found in appendix B.3.

We perform Wilcoxon signed rank tests with Holm-Bonferroni correction at the level of

significance 0.05 to judge whether performance difference between bsl.SEEr and syn.SEEr

is statistically significant across all data sets. Wilcoxon signed-rank tests are typically used

to compare the performance of two models across multiple data sets [189, 50]. The null

hypothesis (H0) states that the two models are equivalent. The alternative hypothesis

(H1) states that they differ significantly.

Wilcoxon signed rank tests also provide the average ranks of bsl.SEEr vs syn.SEEr

across 14 data sets calculated as Rj = 1
N

∑
i r

(i)
j , where r(i)

j is the rank of the jth method

on the ith data set, j ∈ {bsl.SEEr, syn.SEEr}, i ∈ {1, · · · , N}, and N = 14 is the number

of data sets. The average rank (aveRank) provides a reasonable comparison between

bsl.SEEr vs syn.SEEr given rejection of the null hypothesis [50].

54

Ta
bl

e
3.

3:
P

er
fo

rm
an

ce
co

m
pa

ri
so

n
be

tw
ee

n
pa

ir
s

of
sy

n.
SE

E
r

vs
bs

l.S
E

E
r

ac
ro

ss
14

da
ta

se
ts

in
te

rm
s

of
M

A
E

fo
r

sm
al

l,
m

ed
iu

m
,a

nd
la

rg
e

tr
ai

ni
ng

se
t

si
ze

s.
D

iff
er

en
t

tr
ai

ni
ng

se
t

si
ze

s
re

fe
r

to
di

ffe
re

nt
ho

ld
ou

t
va

lu
es

in
ta

bl
e

3.
1.

T
he

re
po

rt
ed

va
lu

es
ar

e
th

e
m

ea
n

of
30

ru
ns

fo
llo

w
ed

by
th

ei
r

ST
D

s.
T

he
co

m
pa

ri
so

n
is

hi
gh

lig
ht

ed
in

or
an

ge
(d

ar
k

gr
ey

)
an

d
bo

ld
fo

nt
fo

r
la

rg
e,

in
ye

llo
w

(l
ig

ht
gr

ey
)

an
d

bo
ld

fo
nt

fo
r

m
ed

iu
m

,a
nd

in
bo

ld
fo

nt
fo

r
sm

al
le

ffe
ct

si
ze

.
T

he
la

st
tw

o
ro

w
s

sh
ow

W
ilc

ox
on

te
st

s
w

it
h

B
on

fe
rr

on
ic

or
re

ct
io

n.
T

he
ov

er
al

lc
om

pa
ri

so
n

of
bs

l.S
E

E
r

vs
sy

n.
SE

E
r

ca
n

be
se

en
fr

om
av

eR
an

k
(a

ve
ra

ge
ra

nk
s)

.
T

he
fir

st
va

lu
e

1
(o

r
0)

in
W

ilc
ox

on
ro

w
m

ea
ns

th
er

e
is

(o
r

no
t)

si
gn

ifi
ca

nt
di

ffe
re

nc
e

de
te

ct
ed

,a
nd

it
s

co
rr

es
po

nd
in

g
p
-v

al
ue

co
m

es
th

e
ne

xt
.

Si
gn

ifi
ca

nt
di

ffe
re

nc
e

is
hi

gh
lig

ht
ed

in
or

an
ge

(d
ar

k
gr

ey
)

on
th

is
ro

w
.

(a
)

Sm
al

l
tr

ai
ni

ng
se

t
si

ze
.

D
at

a
sy

n.
M

LR
bs

l.M
LR

sy
n.

A
T

LM
bs

l.A
T

LM
sy

n.
k
-N

N
bs

l.k
-N

N
sy

n.
RV

M
bs

l.R
V

M
sy

n.
R

T
bs

l.R
T

sy
n.

SV
R

bs
l.S

V
R

M
ax

w
el

l
0.

64
5±

0.
09

5
1.

31
4±

0.
54

9
0.

64
9±

0.
10

1
14

.4
70
±

32
.5

37
0.

72
4±

0.
09

0
0.

73
1±

0.
08

5
0.

58
4±

0.
06

4
0.

64
3±

0.
09

0
0.

66
7±

0.
10

0
0.

69
3±

0.
11

1
0.

57
0±

0.
08

7
0.

59
8±

0.
07

5
C

oc
om

o8
1

0.
65

4±
0.

13
5

8.
59

6±
13

.6
43

0.
66

8±
0.

14
0

17
.5

43
±

39
.4

28
1.

26
6±

0.
14

2
1.

29
7±

0.
14

2
0.

68
4±

0.
11

5
0.

77
9±

0.
14

3
1.

10
0±

0.
17

6
1.

17
2±

0.
13

5
0.

64
0±

0.
11

8
0.

70
3±

0.
15

2
N

as
a9

3
0.

53
4±

0.
08

2
0.

94
2±

0.
87

7
0.

54
0±

0.
08

1
0.

92
7±

0.
83

6
0.

99
0±

0.
11

1
0.

98
4±

0.
10

7
0.

53
2±

0.
11

3
0.

53
4±

0.
12

1
0.

72
8±

0.
07

8
0.

79
6±

0.
08

3
0.

51
9±

0.
07

9
0.

54
4±

0.
14

8
K

it
ch

en
ha

m
0.

65
3±

0.
14

9
0.

76
5±

0.
24

3
0.

65
7±

0.
18

0
0.

75
7±

0.
25

3
0.

74
4±

0.
16

8
0.

74
8±

0.
15

6
0.

69
6±

0.
15

3
0.

83
1±

0.
22

5
0.

80
2±

0.
17

0
0.

83
2±

0.
10

7
0.

62
1±

0.
11

9
0.

67
6±

0.
13

8
A

lb
re

ch
t

0.
82

3±
0.

26
1

3.
49

9±
4.

20
8

0.
81

7±
0.

26
7

48
.9

75
±

23
5.

16
7

0.
72

4±
0.

11
3

0.
71

7±
0.

12
1

0.
67

3±
0.

17
1

0.
76

6±
0.

30
3

0.
80

6±
0.

18
2

0.
92

0±
0.

13
0

0.
58

0±
0.

12
8

0.
57

4±
0.

11
0

K
em

er
er

1.
05

8±
0.

57
3

1.
71

2±
2.

15
2

1.
12

1±
1.

05
9

5.
70

3±
17

.8
81

0.
64

3±
0.

14
2

0.
68

5±
0.

14
3

0.
66

5±
0.

15
1

0.
61

5±
0.

17
0

0.
79

9±
0.

15
5

0.
81

8±
0.

15
0

0.
52

6±
0.

14
7

0.
57

5±
0.

15
7

D
es

ha
r

0.
69

5±
0.

19
3

2.
16

3±
4.

23
0

0.
69

9±
0.

18
8

3.
23

5±
4.

75
8

0.
62

2±
0.

08
8

0.
61

8±
0.

08
4

0.
58

3±
0.

09
5

0.
62

6±
0.

16
0

0.
63

9±
0.

09
4

0.
69

2±
0.

06
8

0.
52

6±
0.

05
1

0.
52

6±
0.

06
7

O
rg

1
1.

32
4±

1.
36

1
2.

13
3±

2.
33

7
1.

00
4±

0.
40

0
66

8.
34

8±
36

48
.4

20
0.

89
5±

0.
20

3
0.

90
7±

0.
13

4
0.

92
2±

0.
22

8
0.

98
8±

0.
23

4
1.

02
7±

0.
29

7
1.

00
0±

0.
25

6
0.

85
3±

0.
20

9
0.

87
4±

0.
16

0
O

rg
2

1.
09

2±
1.

63
4

1.
34

3±
2.

22
2

0.
78

5±
0.

32
5

0.
97

5±
0.

84
6

0.
65

9±
0.

20
8

0.
67

1±
0.

18
5

0.
64

5±
0.

17
9

0.
63

7±
0.

12
9

0.
76

2±
0.

20
9

0.
74

7±
0.

18
9

0.
63

3±
0.

18
2

0.
64

5±
0.

20
1

O
rg

3
0.

68
4±

0.
14

6
0.

74
4±

0.
22

9
0.

68
2±

0.
14

8
0.

74
5±

0.
23

1
0.

76
7±

0.
13

2
0.

78
2±

0.
11

4
0.

75
3±

0.
19

2
0.

85
5±

0.
18

8
0.

83
5±

0.
14

2
0.

97
1±

0.
10

1
0.

64
7±

0.
12

4
0.

70
1±

0.
18

9
O

rg
4

0.
90

2±
0.

25
8

2.
34

1±
3.

98
3

0.
91

6±
0.

34
2

5.
29

8±
20

.0
85

0.
86

0±
0.

15
6

0.
86

3±
0.

13
5

0.
83

6±
0.

09
6

0.
84

6±
0.

10
9

0.
89

7±
0.

13
6

0.
89

2±
0.

11
6

0.
80

0±
0.

09
9

0.
84

0±
0.

13
1

O
rg

5
2.

17
7±

2.
98

3
3.

83
7±

4.
17

2
1.

23
1±

1.
28

7
2.

41
3±

3.
39

8
0.

97
1±

0.
23

2
1.

00
9±

0.
23

9
1.

04
2±

0.
27

0
1.

28
7±

1.
36

6
1.

06
0±

0.
19

5
1.

03
6±

0.
17

2
0.

77
1±

0.
18

8
0.

93
8±

0.
26

5
O

rg
6

1.
00

3±
0.

50
8

2.
68

0±
3.

72
8

1.
11

1±
0.

57
6

2.
12

3±
2.

40
8

0.
95

9±
0.

25
5

0.
96

1±
0.

27
3

0.
99

9±
0.

32
0

1.
08

9±
0.

26
0

1.
15

9±
0.

24
4

1.
16

5±
0.

24
8

0.
86

0±
0.

23
6

0.
88

8±
0.

26
2

O
rg

7
1.

15
6±

0.
65

1
1.

86
8±

2.
49

8
1.

17
9±

0.
67

4
1.

89
0±

2.
49

4
0.

91
7±

0.
16

8
0.

90
9±

0.
15

0
0.

95
3±

0.
23

5
0.

94
6±

0.
15

5
0.

95
9±

0.
16

7
0.

94
6±

0.
13

7
0.

92
3±

0.
22

0
0.

89
2±

0.
14

8
av

eR
an

k
1.

00
2.

00
1.

00
2.

00
1.

29
1.

71
1.

21
1.

79
1.

36
1.

64
1.

14
1.

86
W

ilc
ox

on
1

0.
00

01
22

1
0.

00
01

22
0

0.
05

62
74

1
0.

00
67

14
0

0.
05

79
83

1
0.

00
52

49

(b
)

M
ed

iu
m

tr
ai

ni
ng

se
t

si
ze

.

D
at

a
sy

n.
M

LR
bs

l.M
LR

sy
n.

A
T

LM
bs

l.A
T

LM
sy

n.
k
-N

N
bs

l.k
-N

N
sy

n.
RV

M
bs

l.R
V

M
sy

n.
R

T
bs

l.R
T

sy
n.

SV
R

bs
l.S

V
R

M
ax

w
el

l
0.

49
6±

0.
08

9
0.

65
6±

0.
14

6
0.

49
8±

0.
08

9
0.

66
6±

0.
16

0
0.

66
2±

0.
11

3
0.

68
1±

0.
11

1
0.

54
7±

0.
08

5
0.

58
9±

0.
08

3
0.

56
5±

0.
07

2
0.

57
4±

0.
09

4
0.

49
5±

0.
08

1
0.

52
3±

0.
08

1
C

oc
om

o8
1

0.
44

7±
0.

10
8

0.
43

9±
0.

09
3

0.
47

1±
0.

10
3

0.
47

5±
0.

09
8

1.
13

6±
0.

19
7

1.
21

1±
0.

17
9

0.
50

2±
0.

13
5

0.
50

5±
0.

12
1

0.
84

8±
0.

10
6

0.
92

8±
0.

15
3

0.
45

9±
0.

09
8

0.
45

2±
0.

06
8

N
as

a9
3

0.
44

4±
0.

07
5

0.
45

0±
0.

08
8

0.
44

4±
0.

07
5

0.
45

0±
0.

08
8

0.
81

7±
0.

14
3

0.
84

2±
0.

09
7

0.
44

8±
0.

10
0

0.
45

8±
0.

10
0

0.
62

1±
0.

13
8

0.
63

8±
0.

12
0

0.
41

1±
0.

07
8

0.
43

3±
0.

07
3

K
it

ch
en

ha
m

0.
55

2±
0.

04
3

0.
59

3±
0.

17
0

0.
54

5±
0.

04
6

0.
58

6±
0.

17
4

0.
61

7±
0.

04
9

0.
61

9±
0.

07
2

0.
57

1±
0.

05
0

0.
60

2±
0.

09
0

0.
67

0±
0.

09
0

0.
68

8±
0.

09
7

0.
54

7±
0.

05
9

0.
55

5±
0.

07
8

A
lb

re
ch

t
0.

53
6±

0.
14

1
0.

58
6±

0.
16

7
0.

55
1±

0.
16

3
0.

62
8±

0.
23

4
0.

55
9±

0.
19

1
0.

54
8±

0.
18

0
0.

54
4±

0.
14

5
0.

54
4±

0.
14

7
0.

62
4±

0.
22

0
0.

77
9±

0.
17

2
0.

48
6±

0.
13

4
0.

43
8±

0.
12

4
K

em
er

er
0.

59
6±

0.
21

8
1.

06
3±

0.
82

7
0.

55
3±

0.
22

4
0.

92
7±

0.
58

7
0.

56
6±

0.
19

1
0.

60
8±

0.
20

0
0.

51
7±

0.
16

9
0.

51
3±

0.
21

9
0.

62
3±

0.
14

6
0.

70
7±

0.
19

9
0.

44
8±

0.
15

6
0.

45
8±

0.
16

2
D

es
ha

r
0.

49
0±

0.
06

8
0.

56
1±

0.
09

4
0.

48
9±

0.
06

6
0.

56
1±

0.
09

4
0.

53
1±

0.
03

6
0.

53
1±

0.
04

5
0.

48
0±

0.
05

3
0.

48
6±

0.
07

2
0.

55
0±

0.
07

2
0.

55
8±

0.
07

8
0.

44
7±

0.
04

5
0.

45
1±

0.
05

0
O

rg
1

0.
75

9±
0.

11
4

0.
83

8±
0.

23
4

0.
75

3±
0.

11
8

0.
84

2±
0.

23
9

0.
82

7±
0.

11
7

0.
83

1±
0.

08
3

0.
80

9±
0.

09
7

0.
85

6±
0.

13
3

0.
85

1±
0.

11
8

0.
90

3±
0.

11
6

0.
74

7±
0.

09
1

0.
78

5±
0.

13
3

O
rg

2
0.

54
2±

0.
06

5
0.

55
9±

0.
08

0
0.

53
8±

0.
06

4
0.

55
3±

0.
08

2
0.

59
5±

0.
08

3
0.

59
7±

0.
08

6
0.

56
6±

0.
07

8
0.

56
1±

0.
07

4
0.

59
0±

0.
07

4
0.

68
9±

0.
09

2
0.

53
1±

0.
09

1
0.

54
7±

0.
07

8
O

rg
3

0.
61

2±
0.

09
8

0.
63

2±
0.

10
8

0.
61

4±
0.

09
9

0.
63

1±
0.

10
9

0.
68

8±
0.

06
7

0.
69

0±
0.

06
7

0.
62

2±
0.

06
8

0.
72

5±
0.

12
3

0.
71

8±
0.

13
6

0.
77

2±
0.

07
8

0.
58

7±
0.

06
5

0.
59

4±
0.

07
3

O
rg

4
0.

70
6±

0.
07

0
0.

82
5±

0.
22

1
0.

70
4±

0.
06

8
0.

81
5±

0.
20

2
0.

78
2±

0.
08

4
0.

79
1±

0.
07

3
0.

72
6±

0.
06

5
0.

80
7±

0.
09

3
0.

76
9±

0.
07

3
0.

85
1±

0.
05

3
0.

71
7±

0.
07

2
0.

73
2±

0.
10

0
O

rg
5

0.
62

6±
0.

17
9

0.
68

2±
0.

29
6

0.
66

1±
0.

21
5

0.
71

4±
0.

29
6

0.
78

3±
0.

15
7

0.
79

8±
0.

18
1

0.
71

5±
0.

16
7

0.
75

6±
0.

15
8

0.
77

4±
0.

16
2

0.
92

5±
0.

12
1

0.
57

7±
0.

17
3

0.
58

0±
0.

17
9

O
rg

6
0.

72
9±

0.
13

4
0.

80
6±

0.
28

7
0.

75
1±

0.
15

7
0.

83
9±

0.
29

8
0.

74
6±

0.
16

1
0.

78
3±

0.
17

9
0.

79
5±

0.
26

9
0.

90
0±

0.
27

2
0.

80
8±

0.
14

1
0.

99
9±

0.
14

5
0.

68
8±

0.
11

7
0.

72
1±

0.
15

4
O

rg
7

0.
79

8±
0.

11
1

0.
83

5±
0.

27
8

0.
80

4±
0.

11
3

0.
84

1±
0.

27
9

0.
80

6±
0.

16
0

0.
84

4±
0.

14
1

0.
81

4±
0.

09
9

0.
88

1±
0.

37
6

0.
76

7±
0.

17
4

0.
88

4±
0.

13
7

0.
78

7±
0.

08
6

0.
80

7±
0.

15
6

av
eR

an
k

1.
07

1.
93

1.
00

2.
00

1.
07

1.
93

1.
21

1.
79

1.
00

2.
00

1.
14

1.
86

W
ilc

ox
on

1
0.

00
06

70
1

0.
00

00
91

1
0.

00
06

70
1

0.
01

62
55

1
0.

00
00

91
1

0.
00

37
63

(c
)

L
ar

ge
tr

ai
ni

ng
se

t
si

ze
.

D
at

a
sy

n.
M

LR
bs

l.M
LR

sy
n.

A
T

LM
bs

l.A
T

LM
sy

n.
k
-N

N
bs

l.k
-N

N
sy

n.
RV

M
bs

l.R
V

M
sy

n.
R

T
bs

l.R
T

sy
n.

SV
R

bs
l.S

V
R

M
ax

w
el

l
0.

53
3±

0.
29

2
0.

53
6±

0.
33

6
0.

53
4±

0.
29

6
0.

54
9±

0.
33

7
0.

69
3±

0.
41

6
0.

71
9±

0.
43

9
0.

52
9±

0.
42

6
0.

61
6±

0.
46

2
0.

44
8±

0.
35

4
0.

47
6±

0.
40

0
0.

49
9±

0.
27

8
0.

48
6±

0.
34

4
C

oc
om

o8
1

0.
47

8±
0.

37
1

0.
46

8±
0.

40
3

0.
47

5±
0.

44
4

0.
51

3±
0.

42
2

1.
19

0±
0.

83
0

1.
28

6±
0.

82
6

0.
41

1±
0.

31
3

0.
44

4±
0.

37
4

0.
78

8±
0.

61
4

1.
04

7±
0.

58
4

0.
45

7±
0.

41
9

0.
45

9±
0.

37
6

N
as

a9
3

0.
39

4±
0.

47
6

0.
36

8±
0.

46
0

0.
39

4±
0.

45
8

0.
36

8±
0.

46
0

0.
65

3±
0.

72
0

0.
69

2±
0.

76
1

0.
40

9±
0.

45
6

0.
46

7±
0.

47
1

0.
44

6±
0.

39
4

0.
42

6±
0.

35
4

0.
33

8±
0.

45
4

0.
39

3±
0.

45
0

K
it

ch
en

ha
m

0.
46

2±
0.

03
5

0.
46

1±
0.

03
4

0.
45

5±
0.

03
7

0.
45

6±
0.

03
5

0.
50

9±
0.

05
6

0.
51

0±
0.

05
0

0.
45

6±
0.

05
0

0.
45

4±
0.

04
3

0.
55

3±
0.

05
4

0.
56

4±
0.

05
1

0.
45

7±
0.

03
6

0.
45

8±
0.

03
4

A
lb

re
ch

t
0.

43
3±

0.
31

2
0.

44
7±

0.
36

0
0.

43
3±

0.
31

2
0.

44
7±

0.
36

0
0.

40
7±

0.
35

2
0.

47
2±

0.
45

9
0.

37
5±

0.
31

9
0.

37
9±

0.
42

1
0.

47
5±

0.
35

5
0.

66
6±

0.
49

7
0.

34
4±

0.
32

5
0.

31
6±

0.
33

0
K

em
er

er
0.

44
4±

0.
40

3
0.

44
7±

0.
35

4
0.

40
3±

0.
37

1
0.

43
8±

0.
35

6
0.

49
4±

0.
48

3
0.

49
9±

0.
51

7
0.

35
3±

0.
37

9
0.

35
1±

0.
51

3
0.

53
3±

0.
50

7
0.

63
7±

0.
54

9
0.

35
2±

0.
37

0
0.

37
6±

0.
39

5
D

es
ha

r
0.

43
7±

0.
04

9
0.

46
4±

0.
05

9
0.

43
8±

0.
05

9
0.

46
5±

0.
05

9
0.

50
2±

0.
08

2
0.

50
7±

0.
07

7
0.

42
5±

0.
06

2
0.

43
5±

0.
06

3
0.

44
7±

0.
07

4
0.

45
7±

0.
08

8
0.

42
6±

0.
05

0
0.

43
0±

0.
05

1
O

rg
1

0.
63

1±
0.

11
0

0.
63

5±
0.

10
6

0.
62

9±
0.

10
6

0.
63

6±
0.

10
7

0.
76

2±
0.

12
2

0.
77

6±
0.

13
6

0.
66

3±
0.

13
1

0.
67

2±
0.

17
5

0.
72

5±
0.

12
2

0.
79

8±
0.

14
3

0.
61

7±
0.

10
1

0.
62

1±
0.

11
0

O
rg

2
0.

46
4±

0.
08

7
0.

47
6±

0.
09

7
0.

46
0±

0.
08

2
0.

46
7±

0.
09

6
0.

53
2±

0.
10

5
0.

53
2±

0.
11

0
0.

46
8±

0.
09

5
0.

46
9±

0.
10

7
0.

51
4±

0.
09

5
0.

50
6±

0.
09

3
0.

45
1±

0.
07

4
0.

45
9±

0.
08

2
O

rg
3

0.
52

8±
0.

06
4

0.
53

2±
0.

06
0

0.
52

8±
0.

06
3

0.
53

2±
0.

06
0

0.
60

9±
0.

07
8

0.
62

4±
0.

06
6

0.
53

4±
0.

06
5

0.
55

8±
0.

08
3

0.
58

2±
0.

06
8

0.
58

2±
0.

06
4

0.
51

8±
0.

06
6

0.
52

1±
0.

06
3

O
rg

4
0.

64
4±

0.
06

3
0.

65
2±

0.
06

2
0.

64
6±

0.
06

4
0.

65
5±

0.
06

1
0.

70
9±

0.
08

1
0.

72
9±

0.
07

2
0.

63
8±

0.
06

8
0.

65
5±

0.
06

6
0.

69
8±

0.
07

7
0.

72
1±

0.
08

8
0.

64
5±

0.
06

9
0.

65
0±

0.
06

6
O

rg
5

0.
47

1±
0.

13
8

0.
52

4±
0.

18
0

0.
48

2±
0.

12
9

0.
53

6±
0.

17
6

0.
65

4±
0.

21
6

0.
66

3±
0.

18
9

0.
52

8±
0.

22
6

0.
63

4±
0.

18
2

0.
59

2±
0.

24
9

0.
59

6±
0.

22
9

0.
44

5±
0.

14
4

0.
46

4±
0.

15
1

O
rg

6
0.

61
9±

0.
13

8
0.

65
3±

0.
15

4
0.

63
2±

0.
14

2
0.

66
1±

0.
15

3
0.

67
7±

0.
13

6
0.

67
9±

0.
12

0
0.

57
0±

0.
12

1
0.

56
3±

0.
11

2
0.

65
7±

0.
17

3
0.

67
0±

0.
15

4
0.

58
6±

0.
12

1
0.

60
7±

0.
12

9
O

rg
7

0.
74

8±
0.

21
5

0.
75

5±
0.

19
9

0.
75

3±
0.

21
9

0.
76

0±
0.

20
4

0.
74

3±
0.

22
0

0.
73

6±
0.

24
3

0.
73

5±
0.

18
8

0.
74

1±
0.

19
1

0.
69

0±
0.

18
6

0.
68

6±
0.

21
3

0.
70

7±
0.

16
2

0.
69

1±
0.

15
2

av
eR

an
k

1.
21

1.
79

1.
07

1.
93

1.
07

1.
93

1.
21

1.
79

1.
21

1.
79

1.
21

1.
79

W
ilc

ox
on

1
0.

01
62

55
1

0.
00

06
70

1
0.

00
06

70
1

0.
01

62
55

1
0.

01
62

55
0

0.
17

26
07

55

MLR and ATLM

Since ATLM is a variant of MLR using the automatic data transformation mechanism,

we discuss the effect of our synthetic projects on them together.

For small training set size, we can see from table 3.3(a) that the synthetic projects

generated by our approach can drastically improve the performance of MLR/ATLM with

large effect size in 5 out of 7 SEACRAFT data sets. The improvement is less significant

for the ISBSG data sets: the effect size is medium for one and small for four out of seven

data sets. The synthetic data never hurts the performance of MLR/ATLM in any SEE

data set investigated. Wilcoxon signed rank tests with Holm-Bonferroni correction at the

significance level 0.05 across all SEE data sets detect significantly better performance of

syn.MLR/syn.ATLM over bsl.MLR/bsl.ATLM.

It is noteworthy that the performance of MLR/ATLM is unstable in some data sets.

For example, ATLM performs extremely bad in Org1 with very large MAE (mean MAE of

30 runs) 668.348±3648.420. Further investigation found that ATLM performed extremely

bad on one of the 30 runs with MAE 19,985.448. Removing this outlier, the mean MAE

across the remaining 29 runs reduced to 0.968±0.355 for syn.ATLM vs 2.241±4.303 for

bsl.ATLM, with A12 = 0.6373.

As discussed in appendix A.1.3, the unstable performance of MLR/ATLM may be due

to the scarcity of training examples. When the few training examples are close to each

other, being more likely to happen given inadequate training data, MLR/ATLM may

suffer from ill-conditional problem when doing matrix inversion in the training process.

Another possible reason for ATLM is the incorrect statistic estimate on its automatic

transformation mechanism caused by insufficient training examples.

For medium training set size, we can see from tables 3.3(a) vs 3.3(b) that bsl.MLR

and bsl.ATLM can achieve superior and more stable performance using medium compared

to small training set sizes, indicating that augmenting the training data from an insuffi-

56

cient number can improve the performance of MLR/ATLM. Similar observation can also

seen for syn.MLR/syn.ATLM.

We can also see that our synthetic projects can improve the performance of ML-

R/ATLM especially for SEACRAFT data sets: the effect size A12 is large in 3 data sets.

Wilcoxon signed rank tests with Holm-Bonferroni correction at the significance level 0.05

across all data sets detect significant better performance of syn.MLR/syn.ATLM over

bsl.MLR/bsl.ATLM, showing an overall superiority when the training set size is medium.

For large training set size, the superiority of syn.MLR (syn.ATLM) over bsl.MLR

(bsl.ATLM) becomes smaller than for medium/small training set sizes. For instance, effect

size A12 is medium or small in only two SEACRAFT data sets. Wilcoxon signed rank tests

with Holm-Bonferroni correction at the significance level 0.05 across all data sets detect

significantly better performance of syn.MLR (syn.ATLM) over bsl.MLR (bsl.ATLM) with

p-value 0.016255 (0.00067).

Summary. Our synthetic projects can always improve the performance of MLR and

ATLM, and the improvement magnitude is usually significant with large or medium effect

size especially when the training data is insufficient. When the training set size is large,

our synthetic projects can hardly have detrimental effect and sometimes significantly

improve the baseline performance. They can also help with stable performance especially

for small training set. Therefore, we suggest to apply the proposed synthetic generator

when using MLR and ATLM as SEE methods in insufficient data sets.

RVM

Table 3.3 shows that our synthetic projects can always improve the performance of RVM.

Their effect size is sometimes large or medium, showing substantial performance improve-

ment. Wilcoxon signed rank tests with Holm-Bonferroni correction at the significance

level 0.05 across all data sets detect significant superiority of using our synthetic projects

for all the training set sizes.

57

RT

Table 3.3 shows that our synthetic projects can always improve the performance of RT.

When they are helpful with RT, the effect size is often large or medium especially when the

training set size is not large. Wilcoxon signed rank tests with Holm-Bonferroni correction

at the significance level 0.05 across all data sets detect significant overall superiority of

using our synthetic projects for medium and large training set sizes.

k-NN

Table 3.3 shows that our synthetic projects can usually improve the performance of k-NN.

The improvement for medium and large training sets is a bit more obvious than those for

small training sets. Wilcoxon signed rank tests with Holm-Bonferroni correction at the

significance level 0.05 across all data sets detect significantly better overall performance of

using our synthetic projects for medium and large training set sizes. However, the effect

size shows small or insignificant superiority.

SVR

Table 3.3 shows that our synthetic projects can usually improve the performance of SVR.

The performance improvement for small and medium training sets is more obvious than

those for large training sets. Wilcoxon signed rank tests with Holm-Bonferroni correction

at the significance level 0.05 across all SEE data sets detect significant overall superiority

of using our synthetic projects for small and medium training set sizes. However, the

effect size usually shows insignificant superiority.

Superior performance of SVR. We can see from table 3.3 that SVR usually outper-

forms other SEE methods. Friedman tests at the significance level 0.05 across all data sets

reject the null hypothesis (H0) stating that all models are equivalent. Nevertheless, our

synthetic projects can further improve its performance a little when there are insufficient

training examples.

58

Factors that impact the prediction performance of SEEr. The superiority of

SVR over SEE methods is consistent with some previous works [146, 160, 146, 41], but

contradicts some others [7]. One of the possible reasons would be the usage of different

evaluation approaches that result in different training sizes. The performance of SEE

methods can be affected by the training size. For instance, RVM performed the second

best among all baseline models for small and large training size sets; but when the training

set size was medium, it ranked the fourth after SVR, MLR and ATLM. Some other factors

that may affect the results of SEE model comparison include the data sets used in the

study, the type of preprocessing, the performance metrics, the model parameter tuning,

and the amount of fine tuning of the methods [169, 11, 125].

Effect of Training Size on Point Prediction Performance

This subsection studies the effect of training set size (i.e., small, medium, and large) on

point prediction performance. We can see from table 3.3 that the larger the training set,

the better the performance of SEE methods. Taking MLR in Maxwell as an example, the

average prediction error is decreased from 1.314 for small training set to 0.656 for medium

set, and further to 0.536 for large set. This observation also shows that the performance

improvement is more significant when the training set increases from small to medium

than from medium to large.

SEE methods gain performance improvement from having more training examples

differently. For instance, the profit of more training examples is usually less significant

to k-NN or RVM than to SVR or RT; more training examples can drastically improve

the performance of MLR and ATLM. Taking Maxwell as an example, the performance is

1.314 (small) vs 0.656 (medium) for MLR, 0.693 (small) vs 0.574 (medium) for RT, and

0.731 (small) vs 0.681 (medium) for k-NN. A possible reason can be contributed to the

locality (globality) property of SEE methods as discussed in section 3.4.2.

59

Brief Summary

Our synthetic projects usually have positive effect on and are rarely detrimental to the

baseline performance that does not use synthetic projects. Specifically, our synthetic

projects can usually significantly improve the performance of MLR and ATLM with

large/medium effect size; they can often improve the performance of RVM and RT and

slightly improve the performance of k-NN and SVR. Note that the performance is mea-

sured in the logarithm scale of effort values in this chapter. The prediction performance

in the original scale of effort values will be reported in table C.1. The key conclusion that

syn.SEEr always performs similarly/better than bsl.SEEr remains the same.

3.4.2 Reasons for Effectiveness of Our Synthetic Projects

This subsection aims to answer RQ1.2 outlined in section 3.1: Given an SEE method, if

our synthetic projects are helpful for prediction performance, why? If they are detrimental,

why? Given the results summarised in section 3.4.1, RQ1.2 can be further divided as

• RQ1.2.1. Why do our synthetic projects usually have positive effect on SEE models?

• RQ1.2.2. Why do our synthetic projects have different improvement magnitude for

different SEE methods?

When the training size is large, an SEE method can usually achieve relatively good per-

formance, leaving limited improvement space for using our synthetic projects. Therefore,

our discussion will focus on the cases of insufficient training examples.

Positive Effect of Our Synthetic Projects

This subsection aims to answer RQ1.2.1 in view of the augmentation of training set and

the enhanced ability to handle data noise.

The main possible reason is the augmentation of SEE training sets by encompassing

our synthetic projects into the construction of SEE models, directly tackling the data

scarcity problem of SEE.

60

Another possible reason is the enhanced ability of tackling large data noise that can

lead to large variations from the actual effort values. Effort values are highly likely to

contain noise due to the participation of humans in data collection [170, 84, 91]. When

training examples are insufficient, such noise is more likely to mislead the construction of

SEE models, causing less correct and unstable prediction performance. When the training

examples contain noise and the amount of noise is smaller than the predictive informa-

tion, the synthetic projects can compensate the possibly negative effect and enhance the

prediction robustness. Figure 3.2 illustrates the positive effect of our synthetic projects.

Our data generator emphasizes the more typical areas of learning space, helping avoid

being misled by large noise. Specifically, the training examples that locate in crowded

regions, which are less likely to contain large variations, are more likely to be chosen

to generate our synthetic projects. In this way, our synthetic projects emphasize the

space with small or no noise, and impacts the neighbourhood of those training projects

by encoding more representatives. This would enhance the robustness of this local area

when being used to construct an SEE model. On the other hand, our synthetic projects

can be rarely generated in sparse regions, where large variations are more likely to happen.

In this way, we can circumvent the issue of introducing the data noise that can cause large

variations from the actual values.

It is noteworthy that data noise can only be filtered out if ground-truth noise-free

values are known. However, such ground truth of effort values is not known in reality.

Therefore, coping with noise by filtering would be difficult, and our proposed approach

can be a good alternative. Our synthetic projects may introduce noise but only in the

form of small variations as our synthetic data generator emphasizes the space with smaller

variations and generates synthetic projects with small change.

Effect of Synthetic Projects on Each SEE Method

This subsection aims to answer RQ1.2.2 in view of the locality/globality of SEE methods.

61

Ef
fo

rt

Effort feature

noise-free
training data

noisy
training data

synthetic data

linear model trained
by noise-free data

linear model trained
by noisy data

linear model trained
by both noisy and
synthetic data

Figure 3.2: A demonstration where four synthetic projects help construct MLR for SEE. The
synthetic projects (square) enhance the robustness of its neighbourhood and alleviate detrimental
effect of the noisy training examples.

Locality and globality of SEE methods. SEE methods performing effort estima-

tion only based on training examples that are similar to the testing project are referred

to have locality property [136, 64]. The opposite terminology is referred as globality in the

thesis, where effort estimation is performed based on all training examples regardless of

the similarity to the testing project. Recall that our synthetic projects can only impact

their neighbourhood, so the locality/globality property of an SEE method is a primary

avenue to spread the effect of synthetic projects from the neighbourhood to other areas.

MLR/ATLM is an example of SEE methods with thorough globality. All training

examples, regardless of their similarity to the project to be estimated, are used to estimate

the optimal model parameters. The constructed model is then used to estimate the effort

of testing projects. Therefore, the effect of our synthetic projects in one area will impact

the prediction in the entire space, leading to remarkable effect of our synthetic projects

on prediction performance. Particularly, if synthetic projects are created in an area with

training examples that the SEE method is confident on their effort estimation, this would

improve the prediction in other areas with less training examples, where the model is

originally not confident on.

K-NN is an example of SEE methods with thorough locality, where the effort esti-

62

mation of a testing example is only based on the training examples in its neighbourhood.

Therefore, the effect of our synthetic projects in one area will not impact the prediction

in other areas, causing little effect of our synthetic projects.

RT possesses a hybrid property of globality and locality. On the one hand, RT has

globality. To construct RT, all training examples are used to decide the split features and

the corresponding thresholds on which the tree branches are formed. On the other hand,

RT has locality. To predict the effort of the testing project, RT needs to find a branch

where the testing project is more similar to the training examples of this branch. The

effort estimation is based on the training subset. Therefore, the effect of our synthetic

projects in one area will impact the prediction in other areas to some extent.

RVM is another example of SEE methods with a hybrid property of globality and

locality. On the one hand, RVM has globality. To construct RVM, all training examples

are used to estimate the optimal model parameters. On the other hand, RVM has locality.

The effort estimation of RVM is a weighted summation of the distances between each

training example and the testing project. In this sense, only a subset of training examples

is used to predict the effort. Therefore, the effect of our synthetic projects in one area

can impact the prediction in the other areas in some degree.

SVR has a tolerance margin (ε in table 3.2), with which data noise is tolerant to some

extent. When a synthetic project locates within the tolerance margin, it can be seen as

a disturbance of its original training example and thus has no effect on the decision of

the model parameters. Only when a synthetic project locates on the tolerance margin,

namely a support vector, it can impact the decision of the model parameters. In this

sense, little improvement of using our synthetic projects is probably cased by the much

less opportunity for them to be chosen as support vectors.

63

3.4.3 Comparison of Synthetic Project Generators

This subsection aims to answer RQ1.3 outlined in section 3.1: How well does our data

generator perform compared to other data generators in SEE literature? To answer RQ1.3,

we compare the performance of our data generator against its only competitor in SEE

literature [93], denoted by syn.cmp.SEEr. As presented in section 2.1.4, though Kamei et

al’s [93] only uses k-NN as their base learner, their data generator can be encoded with

other SEE methods straightforwardly.

Syn.SEEr vs Syn.Cmp.SEEr

Table 3.4 lists the performance comparisons of the two synthetic generators. We can

see that, regardless of the SEE model, the performance using our synthetic generator

(syn.SEEr) is often better than the performance using the competing synthetic generator

(syn.cmp.SEEr) especially when the training set size is not large.

The effect size between syn.SEEr and syn.cmp.SEEr across 30 runs of each SEE data

set is checked and exhibited on the cells in the columns of syn.SEEr. For example, the

data cell in the first row and first column of table 3.4(a) is in orange bold indicating

that the effect size between syn.MLR and syn.cmp.MLR across 30 runs in Maxwell is

large. We can see that when the training set size is large, syn.SEEr usually has similar

performance to syn.cmp.SEEr. When the training set size is not large, the superiority

of our synthetic generator over its competitor can be considerable depending on SEE

methods. The superiority magnitude of syn.SEEr over syn.cmp.SEEr is often large for

MLR and ATLM, moderate for RT and RVM, and small for k-NN and SVR.

To analyse the performance superiority across data sets, we perform Wilcoxon signed

rank tests with Holm-Bonferroni correction at the significance level 0.05 to judge whether

performance difference between syn.SEEr and syn.cmp.SEEr is statistically significant.

The Wilcoxon results between syn.SEEr and syn.cmp.SEEr are associated with the

64

Ta
bl

e
3.

4:
P

er
fo

rm
an

ce
co

m
pa

ri
so

n
of

sy
n.

SE
E

r
vs

sy
n.

cm
p.

SE
E

r
ac

ro
ss

14
da

ta
se

ts
in

te
rm

s
of

M
A

E
w

it
h

sm
al

l,
m

ed
iu

m
,a

nd
la

rg
e

tr
ai

ni
ng

se
t

si
ze

s.
T

he
re

po
rt

ed
va

lu
es

ar
e

th
e

m
ea

n
of

30
ru

ns
fo

llo
w

ed
by

th
ei

r
ST

D
s.

E
ffe

ct
si

ze
ac

ro
ss

30
ru

ns
of

ea
ch

SE
E

da
ta

se
t

is
us

ed
to

m
ea

su
re

th
e

pe
rf

or
m

an
ce

di
ffe

re
nc

e
be

tw
ee

n
sy

n.
SE

E
r

vs
sy

n.
cm

p.
SE

E
r

an
d

be
tw

ee
n

sy
n.

cm
p.

SE
E

r
vs

bs
l.S

E
E

r,
w

hi
ch

is
ex

hi
bi

te
d

in
th

e
ce

lls
as

so
ci

at
ed

w
it

h
sy

n.
SE

E
r

an
d

sy
n.

cm
p.

SE
E

r
re

sp
ec

ti
ve

ly
.

T
he

or
an

ge
(d

ar
k

gr
ey

)
bo

ld
/y

el
lo

w
(l

ig
ht

gr
ey

)
bo

ld
/b

ol
d

fo
nt

in
di

ca
te

s
la

rg
e/

m
ed

iu
m

/s
m

al
le

ffe
ct

si
ze

.
T

he
la

st
tw

o
ro

w
s

sh
ow

W
ilc

ox
on

te
st

s
w

it
h

B
on

fe
rr

on
ic

or
re

ct
io

n
ac

ro
ss

al
ld

at
a

se
ts

:
th

e
ro

w
s

as
so

ci
at

ed
to

sy
n.

SE
E

r
lis

t
W

ilc
ox

on
re

su
lt

s
be

tw
ee

n
sy

n.
SE

E
r

vs
sy

n.
cm

p.
SE

E
r,

an
d

th
e

ro
w

s
as

so
ci

at
ed

to
sy

n.
cm

p.
SE

E
r

lis
t

W
ilc

ox
on

re
su

lt
s

be
tw

ee
n

sy
n.

cm
p.

SE
E

r
vs

bs
l.S

E
E

r.
Si

gn
ifi

ca
nt

di
ffe

re
nc

e
of

W
ilc

ox
on

te
st

s
is

hi
gh

lig
ht

ed
in

or
an

ge
(d

ar
k

gr
ey

).

(a
)

Sm
al

l
tr

ai
ni

ng
se

t
si

ze
.

D
at

a
sy

n.
M

LR
sy

n.
C

m
p.

M
LR

sy
n.

A
T

LM
sy

n.
C

m
p.

A
T

LM
sy

n.
k
-N

N
sy

n.
C

m
p.
k
-N

N
sy

n.
RV

M
sy

n.
C

m
p.

RV
M

sy
n.

R
T

sy
n.

C
m

p.
R

T
sy

n.
SV

R
sy

n.
C

m
p.

SV
R

M
ax

w
el

l
0.

64
5±

0.
09

5
1.

33
6±

0.
48

7
0.

64
9±

0.
10

1
14

.6
82
±

32
.4

80
0.

72
4±

0.
09

0
0.

77
7±

0.
07

1
0.

58
4±

0.
06

4
0.

60
3±

0.
06

6
0.

66
7±

0.
10

0
0.

68
4±

0.
09

1
0.

57
0±

0.
08

7
0.

60
1±

0.
07

0
C

oc
om

o8
1

0.
65

4±
0.

13
5

8.
59

6±
13

.6
43

0.
66

8±
0.

14
0

12
.8

27
±

28
.8

33
1.

26
6±

0.
14

2
1.

29
4±

0.
14

8
0.

68
4±

0.
11

5
0.

74
7±

0.
14

7
1.

10
0±

0.
17

6
1.

14
5±

0.
14

1
0.

64
0±

0.
11

8
0.

70
3±

0.
15

2
N

as
a9

3
0.

53
4±

0.
08

2
0.

95
8±

0.
91

3
0.

54
0±

0.
08

1
0.

94
9±

0.
86

3
0.

99
0±

0.
11

1
0.

98
7±

0.
10

2
0.

53
2±

0.
11

3
0.

53
3±

0.
11

4
0.

72
8±

0.
07

8
0.

75
8±

0.
05

9
0.

51
9±

0.
07

9
0.

55
9±

0.
09

1
K

it
ch

en
ha

m
0.

65
3±

0.
14

9
0.

77
2±

0.
25

9
0.

65
7±

0.
18

0
0.

76
7±

0.
26

3
0.

74
4±

0.
16

8
0.

76
5±

0.
16

3
0.

69
6±

0.
15

3
0.

96
2±

0.
36

0
0.

80
2±

0.
17

0
0.

86
9±

0.
17

0
0.

62
1±

0.
11

9
0.

68
8±

0.
14

9
A

lb
re

ch
t

0.
82

3±
0.

26
1

3.
49

9±
4.

20
8

0.
81

7±
0.

26
7

4.
83

5±
6.

72
1

0.
72

4±
0.

11
3

0.
72

0±
0.

15
0

0.
67

3±
0.

17
1

0.
78

5±
0.

24
2

0.
80

6±
0.

18
2

0.
94

0±
0.

21
8

0.
58

0±
0.

12
8

0.
60

9±
0.

12
6

K
em

er
er

1.
05

8±
0.

57
3

1.
30

6±
1.

50
6

1.
12

1±
1.

05
9

19
.4

47
±

92
.7

95
0.

64
3±

0.
14

2
0.

67
9±

0.
13

1
0.

66
5±

0.
15

1
0.

77
7±

0.
34

8
0.

79
9±

0.
15

5
0.

87
5±

0.
20

3
0.

52
6±

0.
14

7
0.

58
4±

0.
14

8
D

es
ha

r
0.

69
5±

0.
19

3
2.

18
9±

4.
22

4
0.

69
9±

0.
18

8
2.

78
7±

3.
02

5
0.

62
2±

0.
08

8
0.

63
0±

0.
10

2
0.

58
3±

0.
09

5
0.

58
7±

0.
12

2
0.

63
9±

0.
09

4
0.

66
9±

0.
08

8
0.

52
6±

0.
05

1
0.

52
3±

0.
06

9
O

rg
1

1.
32

4±
1.

36
1

2.
13

3±
2.

33
7

1.
00

4±
0.

40
0

66
8.

34
8±

36
48

.4
20

0.
89

5±
0.

20
3

0.
90

7±
0.

13
4

0.
92

2±
0.

22
8

0.
98

9±
0.

23
9

1.
02

7±
0.

29
7

1.
00

0±
0.

25
6

0.
85

3±
0.

20
9

0.
87

4±
0.

16
0

O
rg

2
1.

09
2±

1.
63

4
1.

34
3±

2.
22

2
0.

78
5±

0.
32

5
0.

97
5±

0.
84

6
0.

65
9±

0.
20

8
0.

67
1±

0.
18

5
0.

64
5±

0.
17

9
0.

63
5±

0.
13

0
0.

76
2±

0.
20

9
0.

74
7±

0.
18

9
0.

63
3±

0.
18

2
0.

64
5±

0.
20

1
O

rg
3

0.
68

4±
0.

14
6

0.
75

1±
0.

23
4

0.
68

2±
0.

14
8

0.
75

0±
0.

23
8

0.
76

7±
0.

13
2

0.
80

4±
0.

14
8

0.
75

3±
0.

19
2

0.
92

0±
0.

32
6

0.
83

5±
0.

14
2

0.
97

4±
0.

17
8

0.
64

7±
0.

12
4

0.
70

1±
0.

19
0

O
rg

4
0.

90
2±

0.
25

8
2.

34
6±

3.
98

0
0.

91
6±

0.
34

2
5.

30
5±

20
.0

84
0.

86
0±

0.
15

6
0.

84
1±

0.
11

0
0.

83
6±

0.
09

6
1.

06
1±

0.
40

9
0.

89
7±

0.
13

6
0.

88
2±

0.
12

6
0.

80
0±

0.
09

9
0.

82
0±

0.
11

1
O

rg
5

2.
17

7±
2.

98
3

3.
83

7±
4.

17
2

1.
23

1±
1.

28
7

2.
41

3±
3.

39
8

0.
97

1±
0.

23
2

1.
00

9±
0.

23
9

1.
04

2±
0.

27
0

1.
28

7±
1.

36
6

1.
06

0±
0.

19
5

1.
03

6±
0.

17
2

0.
77

1±
0.

18
8

0.
93

8±
0.

26
5

O
rg

6
1.

00
3±

0.
50

8
2.

68
0±

3.
72

8
1.

11
1±

0.
57

6
2.

12
3±

2.
40

8
0.

95
9±

0.
25

5
0.

96
1±

0.
27

3
0.

99
9±

0.
32

0
1.

08
9±

0.
26

0
1.

15
9±

0.
24

4
1.

16
5±

0.
24

8
0.

86
0±

0.
23

6
0.

88
8±

0.
26

2
O

rg
7

1.
15

6±
0.

65
1

1.
86

8±
2.

49
8

1.
17

9±
0.

67
4

1.
89

0±
2.

49
4

0.
91

7±
0.

16
8

0.
90

9±
0.

15
0

0.
95

3±
0.

23
5

0.
94

6±
0.

15
5

0.
95

9±
0.

16
7

0.
94

6±
0.

13
7

0.
92

3±
0.

22
0

0.
89

2±
0.

14
8

W
ilc

ox
on

1
0

1
0

0
0

1
0

0
0

1
0

p
-v

al
ue

0.
00

00
91

0.
25

00
00

0.
00

00
91

1.
00

00
00

0.
02

45
36

0.
35

93
75

0.
00

37
63

0.
32

22
66

0.
05

79
83

0.
91

01
56

0.
00

37
63

0.
20

31
25

(b
)

M
ed

iu
m

tr
ai

ni
ng

se
t

si
ze

.

D
at

a
sy

n.
M

LR
sy

n.
C

m
p.

M
LR

sy
n.

A
T

LM
sy

n.
C

m
p.

A
T

LM
sy

n.
k
-N

N
sy

n.
C

m
p.
k
-N

N
sy

n.
RV

M
sy

n.
C

m
p.

RV
M

sy
n.

R
T

sy
n.

C
m

p.
R

T
sy

n.
SV

R
sy

n.
C

m
p.

SV
R

M
ax

w
el

l
0.

49
6±

0.
08

9
0.

64
6±

0.
15

1
0.

49
8±

0.
08

9
0.

65
9±

0.
16

8
0.

66
2±

0.
11

3
0.

69
9±

0.
10

6
0.

54
7±

0.
08

5
0.

56
4±

0.
07

4
0.

56
5±

0.
07

2
0.

58
2±

0.
09

4
0.

49
5±

0.
08

1
0.

51
4±

0.
07

6
C

oc
om

o8
1

0.
44

7±
0.

10
8

0.
44

9±
0.

08
7

0.
47

1±
0.

10
3

0.
46

1±
0.

08
7

1.
13

6±
0.

19
7

1.
15

0±
0.

14
9

0.
50

2±
0.

13
4

0.
50

7±
0.

11
1

0.
84

8±
0.

10
6

0.
89

3±
0.

15
9

0.
45

9±
0.

09
8

0.
46

5±
0.

05
9

N
as

a9
3

0.
44

4±
0.

07
6

0.
48

7±
0.

09
8

0.
44

4±
0.

07
6

0.
49

9±
0.

10
6

0.
81

7±
0.

14
3

0.
88

0±
0.

17
2

0.
44

8±
0.

10
0

0.
51

6±
0.

13
0

0.
62

1±
0.

13
8

0.
61

2±
0.

08
2

0.
41

1±
0.

07
8

0.
44

9±
0.

08
7

K
it

ch
en

ha
m

0.
55

2±
0.

04
3

0.
58

2±
0.

10
8

0.
54

5±
0.

04
6

0.
57

6±
0.

11
1

0.
61

7±
0.

04
9

0.
62

1±
0.

06
8

0.
57

1±
0.

05
0

0.
64

5±
0.

28
2

0.
67

0±
0.

09
0

0.
65

5±
0.

05
5

0.
54

7±
0.

05
9

0.
55

2±
0.

06
7

A
lb

re
ch

t
0.

53
6±

0.
14

0
0.

57
6±

0.
14

7
0.

55
1±

0.
16

3
0.

59
2±

0.
16

9
0.

55
9±

0.
19

1
0.

53
0±

0.
15

8
0.

54
4±

0.
14

6
0.

53
9±

0.
16

0
0.

62
4±

0.
22

0
0.

69
2±

0.
16

4
0.

48
6±

0.
13

4
0.

46
4±

0.
10

3
K

em
er

er
0.

59
6±

0.
21

8
1.

05
6±

0.
87

8
0.

55
3±

0.
22

3
0.

90
3±

0.
64

2
0.

56
6±

0.
19

1
0.

60
7±

0.
18

7
0.

51
7±

0.
16

9
0.

54
7±

0.
17

7
0.

62
3±

0.
14

6
0.

73
6±

0.
19

4
0.

44
8±

0.
15

6
0.

45
8±

0.
15

9
D

es
ha

r
0.

49
0±

0.
06

8
0.

57
3±

0.
09

2
0.

48
9±

0.
06

6
0.

57
3±

0.
09

1
0.

53
1±

0.
03

6
0.

54
9±

0.
04

3
0.

48
0±

0.
05

3
0.

50
6±

0.
07

4
0.

55
0±

0.
07

3
0.

54
2±

0.
07

3
0.

44
7±

0.
04

5
0.

45
1±

0.
05

0
O

rg
1

0.
75

9±
0.

11
4

0.
86

9±
0.

34
5

0.
75

3±
0.

11
8

0.
87

0±
0.

34
8

0.
82

6±
0.

11
7

0.
85

8±
0.

14
2

0.
80

9±
0.

09
7

0.
98

6±
0.

38
3

0.
85

1±
0.

11
8

0.
90

0±
0.

11
6

0.
74

7±
0.

09
1

0.
78

6±
0.

10
1

O
rg

2
0.

54
2±

0.
06

5
0.

57
0±

0.
07

6
0.

53
8±

0.
06

4
0.

56
5±

0.
07

8
0.

59
5±

0.
08

3
0.

59
6±

0.
07

4
0.

56
6±

0.
07

8
0.

56
6±

0.
06

9
0.

59
0±

0.
07

4
0.

59
4±

0.
10

4
0.

53
1±

0.
09

1
0.

55
5±

0.
07

3
O

rg
3

0.
61

2±
0.

09
8

0.
64

3±
0.

12
4

0.
61

4±
0.

09
9

0.
64

3±
0.

12
4

0.
68

8±
0.

06
7

0.
71

9±
0.

11
3

0.
62

2±
0.

06
8

0.
74

0±
0.

32
2

0.
71

8±
0.

13
6

0.
74

6±
0.

11
0

0.
58

7±
0.

06
5

0.
62

0±
0.

10
9

O
rg

4
0.

70
6±

0.
07

0
0.

84
1±

0.
24

4
0.

70
4±

0.
06

8
0.

83
6±

0.
24

4
0.

78
2±

0.
08

4
0.

78
6±

0.
06

9
0.

72
6±

0.
06

5
0.

83
7±

0.
15

3
0.

76
9±

0.
07

3
0.

77
2±

0.
06

7
0.

71
7±

0.
07

2
0.

74
6±

0.
08

0
O

rg
5

0.
62

6±
0.

17
9

0.
68

7±
0.

30
5

0.
66

1±
0.

21
6

0.
74

3±
0.

33
3

0.
78

3±
0.

15
7

0.
79

8±
0.

18
1

0.
71

5±
0.

16
7

0.
82

4±
0.

31
8

0.
77

4±
0.

16
2

0.
98

1±
0.

14
4

0.
57

7±
0.

17
3

0.
59

9±
0.

17
9

O
rg

6
0.

72
9±

0.
13

4
0.

77
1±

0.
22

6
0.

75
1±

0.
15

7
0.

80
8±

0.
26

8
0.

74
6±

0.
16

1
0.

78
7±

0.
18

5
0.

79
5±

0.
26

9
1.

04
7±

0.
40

7
0.

80
8±

0.
14

1
0.

99
9±

0.
14

5
0.

68
8±

0.
11

7
0.

72
5±

0.
12

8
O

rg
7

0.
79

8±
0.

11
0

0.
86

2±
0.

30
4

0.
80

4±
0.

11
3

0.
86

5±
0.

30
4

0.
80

7±
0.

16
0

0.
84

4±
0.

16
5

0.
81

4±
0.

09
9

1.
01

7±
0.

53
6

0.
76

7±
0.

17
4

0.
85

9±
0.

14
1

0.
78

7±
0.

08
6

0.
79

5±
0.

15
0

W
ilc

ox
on

1
0

1
0

1
0

1
1

1
0

1
0

p
-v

al
ue

0.
00

00
91

0.
21

65
53

0.
00

06
70

0.
54

16
26

0.
00

06
70

0.
46

31
35

0.
00

37
63

0.
00

37
63

0.
01

62
55

0.
06

76
27

0.
00

06
70

0.
04

18
70

(c
)

L
ar

ge
tr

ai
ni

ng
se

t
si

ze
.

D
at

a
sy

n.
M

LR
sy

n.
C

m
p.

M
LR

sy
n.

A
T

LM
sy

n.
C

m
p.

A
T

LM
sy

n.
k
-N

N
sy

n.
C

m
p.
k
-N

N
sy

n.
RV

M
sy

n.
C

m
p.

RV
M

sy
n.

R
T

sy
n.

C
m

p.
R

T
sy

n.
SV

R
sy

n.
C

m
p.

SV
R

M
ax

w
el

l
0.

53
3±

0.
29

2
0.

49
7±

0.
35

3
0.

53
4±

0.
29

6
0.

51
9±

0.
38

8
0.

69
3±

0.
41

7
0.

71
3±

0.
46

4
0.

52
9±

0.
42

7
0.

50
1±

0.
38

0
0.

44
8±

0.
35

4
0.

51
0±

0.
44

3
0.

49
9±

0.
27

8
0.

45
9±

0.
34

4
C

oc
om

o8
1

0.
47

8±
0.

37
1

0.
44

9±
0.

43
0

0.
47

5±
0.

44
4

0.
44

9±
0.

43
0

1.
19

0±
0.

83
0

1.
21

9±
0.

83
0

0.
41

1±
0.

31
3

0.
44

6±
0.

33
9

0.
78

8±
0.

61
4

0.
89

2±
0.

58
7

0.
45

7±
0.

41
9

0.
44

4±
0.

43
7

N
as

a9
3

0.
39

4±
0.

47
6

0.
38

5±
0.

49
2

0.
39

4±
0.

45
8

0.
38

6±
0.

49
2

0.
65

3±
0.

72
0

0.
64

8±
0.

76
0

0.
40

9±
0.

45
6

0.
59

6±
0.

79
7

0.
44

6±
0.

39
4

0.
43

5±
0.

47
8

0.
33

8±
0.

45
4

0.
37

8±
0.

44
3

K
it

ch
en

ha
m

0.
46

2±
0.

03
5

0.
46

4±
0.

04
0

0.
45

5±
0.

03
7

0.
45

3±
0.

03
6

0.
50

9±
0.

05
6

0.
51

2±
0.

05
3

0.
45

6±
0.

05
0

0.
48

4±
0.

04
9

0.
55

3±
0.

05
4

0.
57

5±
0.

05
8

0.
45

7±
0.

03
6

0.
46

2±
0.

03
5

A
lb

re
ch

t
0.

43
3±

0.
31

2
0.

42
2±

0.
33

3
0.

43
3±

0.
31

2
0.

42
2±

0.
33

3
0.

40
7±

0.
35

2
0.

42
9±

0.
39

5
0.

37
5±

0.
31

9
0.

35
4±

0.
34

5
0.

47
5±

0.
35

5
0.

54
7±

0.
41

9
0.

34
4±

0.
32

5
0.

36
3±

0.
25

0
K

em
er

er
0.

44
4±

0.
40

3
0.

47
6±

0.
38

4
0.

40
3±

0.
37

1
0.

47
7±

0.
40

2
0.

49
4±

0.
48

3
0.

49
0±

0.
49

5
0.

35
3±

0.
37

9
0.

36
1±

0.
39

4
0.

53
3±

0.
50

7
0.

55
7±

0.
51

6
0.

35
2±

0.
37

0
0.

36
4±

0.
40

7
D

es
ha

r
0.

43
7±

0.
04

9
0.

47
0±

0.
06

7
0.

43
8±

0.
05

9
0.

47
0±

0.
06

6
0.

50
2±

0.
08

2
0.

51
8±

0.
08

0
0.

42
5±

0.
06

2
0.

43
4±

0.
06

7
0.

44
7±

0.
07

4
0.

46
2±

0.
07

0
0.

42
6±

0.
05

0
0.

43
0±

0.
05

1
O

rg
1

0.
63

1±
0.

11
0

0.
67

1±
0.

12
6

0.
62

9±
0.

10
6

0.
65

1±
0.

11
7

0.
76

2±
0.

12
2

0.
74

6±
0.

13
2

0.
66

3±
0.

13
1

0.
68

2±
0.

14
9

0.
72

5±
0.

12
2

0.
75

4±
0.

10
3

0.
61

7±
0.

10
1

0.
66

6±
0.

13
3

O
rg

2
0.

46
4±

0.
08

8
0.

47
5±

0.
10

2
0.

46
0±

0.
08

2
0.

46
7±

0.
10

1
0.

53
2±

0.
10

5
0.

53
6±

0.
11

2
0.

46
8±

0.
09

5
0.

46
8±

0.
11

8
0.

51
4±

0.
09

4
0.

50
7±

0.
08

1
0.

45
1±

0.
07

4
0.

45
9±

0.
08

3
O

rg
3

0.
52

8±
0.

06
3

0.
52

8±
0.

06
6

0.
52

8±
0.

06
3

0.
52

9±
0.

06
6

0.
60

9±
0.

07
8

0.
60

8±
0.

06
9

0.
53

4±
0.

06
5

0.
57

2±
0.

08
9

0.
58

2±
0.

06
8

0.
58

1±
0.

06
4

0.
51

8±
0.

06
6

0.
52

0±
0.

06
5

O
rg

4
0.

64
4±

0.
06

3
0.

66
5±

0.
06

1
0.

64
6±

0.
06

4
0.

66
7±

0.
06

1
0.

70
9±

0.
08

1
0.

72
8±

0.
07

9
0.

63
8±

0.
06

8
0.

65
8±

0.
06

4
0.

69
8±

0.
07

7
0.

71
6±

0.
07

0
0.

64
5±

0.
06

9
0.

66
6±

0.
06

3
O

rg
5

0.
47

1±
0.

13
8

0.
51

1±
0.

15
4

0.
48

2±
0.

12
9

0.
52

9±
0.

14
9

0.
65

4±
0.

21
6

0.
64

7±
0.

19
9

0.
52

8±
0.

22
6

0.
61

4±
0.

18
4

0.
59

2±
0.

24
9

0.
61

7±
0.

19
3

0.
44

5±
0.

14
4

0.
46

8±
0.

13
7

O
rg

6
0.

61
9±

0.
13

8
0.

65
6±

0.
16

4
0.

63
2±

0.
14

2
0.

67
8±

0.
18

8
0.

67
7±

0.
13

6
0.

68
7±

0.
13

1
0.

57
0±

0.
12

1
0.

67
9±

0.
37

0
0.

65
7±

0.
17

3
0.

67
5±

0.
16

9
0.

58
6±

0.
12

2
0.

60
6±

0.
12

6
O

rg
7

0.
74

8±
0.

21
5

0.
76

1±
0.

19
7

0.
75

3±
0.

21
9

0.
76

1±
0.

19
8

0.
74

3±
0.

22
0

0.
71

0±
0.

24
6

0.
73

5±
0.

18
8

0.
76

9±
0.

26
7

0.
69

0±
0.

18
6

0.
72

7±
0.

23
3

0.
70

7±
0.

16
2

0.
69

0±
0.

15
2

W
ilc

ox
on

0
0

0
0

0
0

1
0

1
0

0
0

p
-v

al
ue

0.
10

40
04

0.
80

77
39

0.
17

26
07

0.
90

31
98

0.
42

62
70

0.
02

45
36

0.
00

37
63

0.
21

65
53

0.
01

62
55

0.
46

31
35

0.
10

40
04

0.
95

15
38

65

columns of syn.SEEr, and significant difference is highlighted in orange. For example,

the data cell in the last row and first column of table 3.4(a) is orange indicating that

syn.MLR performs significantly better than syn.cmp.MLR across all data sets.

Overall, Wilcoxon signed rank tests with Holm-Bonferroni correction between syn.SEEr

and syn.cmp.SEEr show that when the training set is not large, our synthetic generator is

always superior to its competitor for having significantly better prediction performance.

When our synthetic generator is not superior to its competitor, it is not worse either.

Syn.Cmp.SEEr vs bsl.SEEr

Comparing the performance of bsl.SEEr in table 3.3 and syn.cmp.SEEr in table 3.4, we

can see that syn.cmp.SEEr often fails to outperform bsl.SEEr. Effect size across the 30

runs of each data set between syn.cmp.SEEr and bsl.SEEr is always small or insignificant,

indicating that the synthetic projects generated by the literature do not have great impact

on prediction performance. Wilcoxon signed rank tests with Holm-Bonferroni correction

at the significance level 0.05 show that syn.cmp.SEEr is similar to bsl.SEEr in most cases.

However, the competing synthetic generator was claimed to be effective in improving

the performance of its baseline model k-NN [93]. Further studies found that the experi-

ments of [93] were based on Desharnais data set only. The reported superiority of using

their synthetic projects was small and no statistical test was conducted. We suspect that

with more data sets into their experiments and using statistical tests, their conclusions

would probably be no significant difference with or without using their synthetic projects.

3.5 Summary and Discussion

This chapter proposes a synthetic project generator to address the data scarcity problem

of SEE. A synthetic project is generated by slightly displacing one training example that

is chosen randomly. The generated synthetic projects are then added to the training set

and used to construct SEE models.

66

The effectiveness of our synthetic project generator has been validated by answering

the sub-research questions outlined in section 3.1 as follows.

• RQ1.1: Given an SEE method, can our synthetic data generator help improve pre-

diction performance over the baseline that does not use synthetic projects? When? Could

it be detrimental? Experimental results show that our synthetic projects usually have

positive effect on and are rarely detrimental to the performance of SEE methods. They

are particularly helpful for small and medium data set sizes for MLR and ATLM, mod-

erately helpful for RVM and RT, and not very helpful for k-NN and SVR. Nevertheless,

they are hardly detrimental to the baseline performance.

• RQ1.2: Given an SEE method, if our synthetic projects are helpful for prediction

performance, why are they helpful? If they are detrimental, why are they detrimental?

The effectiveness of our synthetic projects is mainly due to the data augmentation and

the robustness enhancement in the areas that data noise may injure the quality of SEE

model construction. Different SEE methods have different improvement magnitude which

is affected by their locality and globality properties. Our synthetic projects are rarely

detrimental to the baseline performance that does not use synthetic projects.

• RQ1.3: How well does our data generator perform compared to other data generators

in SEE literature? Experimental results show that our synthetic project generator is

significantly superior to or has no significant difference from Kamei et al’s [93] that is the

only competitor in SEE literature. Their data generator [93] probably brings no significant

improvement to the baseline performance that does not use synthetic projects.

This chapter also studies the impact of training set size on prediction performance

based on the holdout evaluation. Experimental results show SEE methods usually achieve

better performance with a larger training set; the magnitude of superiority decreases on

the increase of the training size. This is a by-product of answering RQ1.

67

CHAPTER 4

RVM: A Promising Uncertain Effort Estimator

4.1 Introduction

Uncertainty is inherent in SEE [82, 102] and there are several sources of uncertainty in

the context of SEE [174, 91, 84]. For instance, uncertainty may arise from SEE model

limitation and/or from the noise in the data used for constructing the models [97, 91, 84,

104]. Appropriate SEE methods should ideally handle uncertainty explicitly and support

decision-making in assessing estimation risks based on such uncertainty.

Despite of a vast literature in creating SEE methods, most of them can only produce

point estimation [19, 187]. Relying on point estimation may ignore the uncertain factors

and lead project managers to wrong decision-making. Consequently, there is no feasible

way to manage risks and uncertainty. If a point estimate had to ensure against all possible

uncertainty, the price of constructing such an SEE model would be prohibitive [97].

For decades, software estimation experts have argued that besides point estimation,

effective project management also requires information about effort-related risks [103].

Particularly, they have suggested that an effort estimate of a software project should be
0This chapter corresponds to RQ2 in section 1.1.2, and is based on our published paper [170].

68

a range of values with a specific probability, namely a PI with a CL, within which the

software development can be completed [97]. This can be considered as a more reasonable

representation of reality than a mere point estimate and can provide flexibility in the

subsequent management activities. Taking bidding for a software project as an example,

if the competition is very fierce, the project managers can report a lower price within the

PI to enhance the winning chance; when the competition is less fierce, they can propose

a higher price for bringing more profit to the organization.

This chapter aims to introduce a Bayesian regression model to the context of SEE,

which can provide uncertain effort estimation and is suitable for small training set for

answering the second research question of the thesis:

RQ2. Is there any ML approach that can provide uncertain effort estimation?

How well can it perform in terms of point and uncertain prediction?

To accomplish the answer to RQ2, we will validate RVM in terms of point and uncertain

prediction performance in the context of SEE, forming two sub-research questions:

• RQ2.1: How well does RVM perform compared to other SEE methods when used

as a point estimator?

• RQ2.2: How to provide PIs with CLs based on RVM? How well can the PIs with

CLs derived from RVM perform?

Answering RQ2.1 allows us to know how promising RVM is in the context of SEE. If it

performs very badly, none of the conclusions based on it are reliable. If RVM is competitive

to other SEE methods, its conclusions are reliable. It is worth noting that our aim is not to

show that RVM is a SEE method that outperforms other SEE methods, but to investigate

whether it presents competitive performance and should be investigated further, given its

capability to provide uncertain effort estimation.

69

We will show that RVM is a promising SEE method with competitive point prediction

performance and can provide PIs with CLs. On the one hand, experimental results show

that RVM is very competitive to state-of-the-art SEE methods, being usually ranked the

first or second in 7 across 11 data sets in terms of MAE. On the other hand, RVM explicitly

models effort noise and provides a probabilistic effort estimate for a new project, based

on which PIs of CLs are derived. The PIs with CLs can usually pass the justification in

terms of hit rate, but they can be too wide to be informative.

The remaining of this chapter is organized as follows. Section 4.2 presents its adap-

tation to SEE in providing uncertain effort estimation. After the experimental design in

section 4.3, the performance of RVM as a point and uncertain estimator is evaluated in

section 4.4. This chapter is concluded in section 4.5.

4.2 RVM for Uncertain Effort Estimation

This section discusses the derivation of PIs with CLs from RVM. More discussion on RVM

in the context of SEE can be found in appendix A.2.

RVM models effort noise by a Gaussian distributed random variable ε in Eq. (A.9).

The probabilistic effort estimation is derived accordingly. Note that Gaussian assumption

of noise variable ε leads to but does not equal to Gaussian distribution of predicted effort

of a testing project. In other words, the Gaussian assumption comes before any training

example is observed; in contrast, the effort of a testing project is predicted to be Gaussian

distributed after training examples are used.

In the thesis, uncertainty is considered in probability, which originates from the unpre-

dictable and non-deterministic nature of future software projects. Specifically, uncertainty

is interpreted as the factors influencing effort values. Accordingly, SEE uncertainty can

be characterized through two types of interval predictions:

• Prediction intervals of estimated effort comprise minimum and maximum values, be-

70

tween which the future effort is expected to lie with a confidence level (see section 2.4.3).

For instance, a project manager may be 95% certain that the estimated effort of a project

will fall between 500 and 2,500 person-hours with the most likely effort value 1,500.

• Confidence interval (CI) is another uncertainty concept, which usually refers to the

uncertainty associated with the unknown population statistics, such as the uncertainty of

the mean of an unknown distribution [13, pp.761-824]. For instance, a project manager

may be 95% certain that the mean of the effort values of all developed software projects

is 1,500 person-months.

• Overall, PIs relate with an unknown software project to be estimated, while CIs relate

with (e.g.) the mean of effort values of the known software projects. In the thesis, we

focus on providing PIs with CLs for an unknown software project.

Based on Gaussian effort estimation from RVM, a PI with CL α% can be derived by

CDF of this probability namely F as:

PIα = [max{0,F−1(1− α
2)},F−1(1 + α

2)] (4.1)

where F−1(β) denotes the effort value of the β-percentile of Gaussian CDF. According to

the symmetry of Gaussian PDF, the proportion between 1−α
2 and 1+α

2 equals to α which

equals to the requested CL. Since effort values should be non-negative, we confine the

non-negative value for the left-hand-side. A point estimate is assigned to be the mean of

the Gaussian distribution, since it is the most likely achievable effort value.

There is an easier way to derive the PIs with CLs 68.27%, 95.45%, and 99.70% based

on “68-95-99.7” rule of the Gaussian distribution [191]. Specifically, the PIs with CL0.6827,

CL0.9545, and CL0.997 can be easily derived as:

[max{0, ŷ − iσ̂)}, ŷ + iσ̂] (4.2)

where ŷ denotes the estimated mean effort, σ̂ is the estimated STD of effort noise, and

71

i ∈ {1, 2, 3} correspond CL0.6827, CL0.9545, and CL0.997 respectively. Note that we can also

derive PIs with these CLs according to Eq. (4.1) and it is just easier by Eq. (4.2).

In this chapter, PIs with CL0.6827 and CL0.9545 will be provided and evaluated for being

reasonable as a first step of uncertain effort estimation. Specifically, CL0.6827 is more or

less sufficient for practical use since usually only 3 of 10 projects may go below the lower

bound or exceed the upper bound; the presence of CL0.9545 is to have an idea that how well

the PIs derived by RVM can achieve when considering higher CLs. CL99.70% is excluded

since it is too strict requiring not a mere violation of 100 PIs.

4.3 Experimental Design

The experiments are designed to answer RQ2.1 and RQ2.2 by evaluating the point and

uncertain prediction performance of RVM.

4.3.1 Data Sets

Experimental analyses in this chapter are based on 11 data sets from SEACRAFT [130]

and ISBSG [77] Repositories. Four data sets including Maxwell, Cocomo81, Nasa93, and

Kitchenham are from SEACRAFT repository; Seven data sets, namely Org1∼Org7, are

the subsets of ISBSG being grouped according to organization type as table 2.5. Table 4.1

lists basic description of these data sets. Detailed description and the preprocessing pro-

cedures on them can be found in section 2.4.1. As explained in section 2.4.1, Desharnais,

Albrecht, and Kemerer are not studied in this chapter since most of their input features

are size-related or estimation of completion effort, being not practical in reality.

4.3.2 Performance Evaluation

We use 10 times 10-fold CV to evaluate the performance of SEE methods, which repeats

ten times 10-fold CV with different sampling orders in order to cancel out the impact of

project orders. We used 10-fold CV because the SEE data are usually small, and it may

72

Table 4.1: The investigated SEE data sets.

Repository Name #(Project) #(feature)

SEACRAFT

Maxwell 62 23
Kitchenham 145 3
Cocomo81 63 17

Nasa93 93 17

ISBSG

Org1 76 3
Org2 32 3
Org3 162 3
Org4 122 3
Org5 21 3
Org6 22 3
Org7 21 3

cause high bias if using small k (k = 2 in k-fold) due to the lack of training data; whereas

large k, such as leave-one-out with k equals to the size of data, may result in high variance

[69]. Our preliminary empirical results with 5 times 2-fold CV, leave-one-out and 10 times

10-fold CV also indicate this tendency. Therefore, we consider 10-fold as a suitable choice.

The same to the experimental design in section 3.3.2, we use no further spare testing

sets because SEE data sets are too small. If using a spare testing set, we will have an

even smaller number of projects for training and validating (model selection). Moreover,

a small testing set may not represent the whole space very well, so that the evaluation of

the learning model would be potentially invalid.

The point prediction performance is measured by MAE as

T∑
i=1

|yi − ŷi|
N

,

for being symmetric and not bias towards under or overestimation [164]. We do not report

(e.g.) MMRE because it has been shown to be a biased measurement [63] and we do not

want to include a misleading measurement in our results. More performance metrics will

be reported in chapter 5 for more thorough performance evaluation.

73

4.3.3 Benchmark SEE Methods

We compare point prediction performance of RVM against the following five approaches:

k-NN, RT, MLP, Bagging+RT, and Bagging+MLP in this chapter.

We do not investigate Bagging+k-NN because Bagging is known to improve accuracy

for unstable models1 such as MLP and RT, whilst it may slight degrade the performance

of stable models such as k-NN [29, 32]. We use WEKA [67] to implement the five SEE

methods: k-NN was based on IBK with normalized attributes and Euclidean distance, RT

was based on REPTree without pruning, and the others were based on the corresponding

classes with the same name. MLP were set to automatically normalize dependent and

independent variables. RVM was implemented in MATLAB due to the advantage in

matrix computation and the absence of the implementation in WEKA.

RT, Bagging+RT and Bagging+MLP were chosen due to their good performance in

comparison to several other ML approaches in SEE literature [136]. K-NN is among the

simplest SEE approaches, and shown to perform frequently well [165]. MLP have not been

shown well performed in SEE, however, a recent study showed that after finely tuned it

could achieve competitive performance [169]. In summary, the main reason of including

the five models is their relatively good performance reported by current literature.

4.3.4 Parameter Settings

The parameter values of the SEE methods investigated are shown in table 4.2. The default

parameter values are emphasized in bold and correspond to the default values of WEKA.

For RT, the maximum depth of −1 means unlimited depth. For MLP, the default value a

in #(hidden nodes) represents: a = [#(attributes)+1]/2. For RVM, 0.1 : 1.0 : 15 denotes

the values counting from 0.1 to 15 with step = 1.0.

All methods except for RVM or k-NN have more than one tuned parameters, and
1Unstable means that small changes in the training sample can result in large changes in the model.

74

Table 4.2: Parameter values of the investigated SEE methods. The integers in parentheses
are the numbers of investigating parameter values.

Approach Parameters
k-NN k(#neighbours)={1, 3, 5, 7, 9, 11, 13} (#7)

RT
M(mim.#instance/leaf)={1, 2, 3, 6, 12, 20} (#6)
V (mim.variance for split)= {0.0001,0.001, 0.01, 0.1, 10} (#5)
L(max.tree depth)={-1, 2, 6, 10, 15, 20} (#6)

MLP

L(Learning rate)={0.1, 0.2, 0.3, 0.4, 0.5} (#5)
M(Momentum)={0.1, 0.2, 0.3, 0.4, 0.5} (#5)
N(#epochs)={100, 500, 1000} (#3)
H(#hidden nodes)={a, 1, 3, 5, 9} (#4)

Bagging I(iteration for Bagging)={5, 10, 25, 50, 75} (#5)
Use all possible parameter settings of the adopted base learners.

RVM One parameter in basis function = 0.1 : 1.0 : 15 (#15)

parameter settings are consisted by enumerating all values for each parameter with all

the others set to the default ones. Taking RT as an example, we will compute performance

of 17 parameter settings (6 for varying M and L, and 5 for varying V) by first fixing V

and L to the defaults and varying M , then fixing M and L to the defaults and varying

V , and finally fixing M and V to the defaults and varying L.

Our analyses are based on the performance with the best parameter settings, with

which the SEE method can achieve the best prediction performance in terms of MAE

among all parameter settings in table 4.2.

4.4 Experimental Result and Discussion

This section aims to evaluate the performance of RVM compared to other investigated

SEE methods to accomplish the answer to RQ2 of the thesis.

4.4.1 Evaluation of Point Estimation of RVM

This subsection aims at answering RQ2.1 presented in section 4.1: How well does RVM

perform compared to other SEE methods when used as a point estimator? As described

in appendix A.2 and illustrated in figure A.1, a point prediction of a software project is

75

Table 4.3: Point prediction performance of the investigated SEE methods in terms of
MAE. The ranks of the methods are in the parentheses. AveRank denotes the average
rank of each method across the data sets.

Data Set RVM RT Bagging+RT MLP Bagging+MLP k-NN
Maxwell 4192.40(2) 4881.22(4) 4181.26(1) 5057.00(5) 10284.98(6) 4501.18(3)

Kitchenham 1701.00(1) 2202.64(6) 1963.32(4) 2182.23(5) 1899.25(3) 1804.88(2)
Cocomo81 591.21(4) 573.09(1) 588.29(3) 654.73(5) 582.25(2) 666.27(6)

Nasa93 359.30(2) 393.40(3) 357.04(1) 664.38(6) 456.23(5) 448.87(4)
Org1 3235.50(2) 3641.39(5) 3068.28(1) 4356.59(6) 3523.73(4) 3274.68(3)
Org2 1829.00(1) 2130.05(4) 2112.60(3) 2637.30(6) 2150.11(5) 1983.81(2)
Org3 1007.29(2) 1011.94(3) 1012.59(4) 1215.63(6) 1058.60(5) 986.51(1)
Org4 3579.10(1) 4374.10(4) 4300.92(3) 4997.01(6) 4554.39(5) 4019.28(2)
Org5 5938.10(6) 5353.56(5) 5154.14(2) 5181.34(3) 4958.01(1) 5351.23(4)
Org6 2811.20(6) 2806.88(5) 2615.18(2) 2707.65(4) 2640.45(3) 2432.00(1)
Org7 4915.00(3) 4809.73(1) 5114.43(5) 5134.44(6) 4939.80(4) 4874.32(2)

aveRank 2.73 3.73 2.64 5.27 3.91 2.73

assigned as the expectation of the Gaussian distribution derived by RVM, for having the

highest probability among the estimated effort values.

Table 4.3 lists the performance of SEE methods across 11 data sets in terms of MAE.

The integers in the parentheses are the ranks of the associated SEE method. We can see

that RVM and k-NN can achieve the same average rank of 2.73, ranking the second after

Bagging+RT that has the best average performance across data sets. This indicates the

competitive performance of RVM used as a point effort estimator.

We conduct statistical tests for a more thorough idea of the performance comparison.

Friedman test with significance level 0.05 across data sets rejects the null hypothesis (H0)

stating that all methods are equivalent. The p-value is 4.35 being much larger than the

critical value of 2.40. Post-hoc tests with Holm-Bonferroni corrections detect significant

superiority of RVM over MLP with the p-value 0.00142. Post-hoc tests cannot detect

significant differences of RVM against the other methods.

Overall, RVM is competitive with other SEE methods when used as a point effort

estimator. Thus, it is a promising SEE method, being worthwhile of further investigation

considering its advantage of providing PIs with CLs.

76

Table 4.4: Hit rate values in line with CL0.6827 and CL0.9545. The hit rate that is much
smaller than the corresponding CL is highlighted in yellow (light grey).

Data Set HitRate1(%) HitRate2(%)
Maxwell 44.61 74.84

Kitchenham 85.31 95.24
Cocomo81 30.79 53.17

Nasa93 68.60 82.15
Org1 86.84 91.97
Org2 33.13 56.25
Org3 83.83 95.12
Org4 76.07 90.16
Org5 74.76 86.67
Org6 90.91 95.46
Org7 79.05 89.52

4.4.2 Evaluation of Uncertain Estimation of RVM

Section 4.2 presents how to derive PIs with any CLs in Eq. (4.1) and with certain CLs in

Eq. (4.2). This gives the answer to the first part of RQ2.2 outlined in section 4.1: How

to provide PIs with CLs based on RVM? How well can the PIs with CLs derived from

RVM perform? This subsection aims to accomplish answering RQ2.2 by evaluating the

PIs with CLs in terms of the metrics presented in section 2.4.3.

Hit Rate of PIs with CLs

The most common evaluation metric of PIs is hit rate (HitRate) [104, 84]. When the PIs

with CLα are evaluated by T testing examples, there should be around α × T projects

whose effort values fall within the PIs. Hit rate can be calculated by first counting the

number of projects whose effort is within the PIs and then dividing that by the total

number of software projects. If the PIs with CLs are realistic, the hit rate should be

around CLα. In this thesis, hit rate is evaluated in Eq. (2.9), where the values that are

equivalent or greater than their CLs are considered to be satisfactory.

This chapter evaluates the PIs with CL0.6827 and CL0.9545 as explained in section 4.2.

The evaluation on more CLs will be reported in chapter 5. Specifically, PIs with CL0.6827

77

and CL0.9545 in terms of hit rate can be validated as follows. (1) Compute {fs(yi)} as

fs(yi) =


1, for |yi − ŷi| < s ∗ σ̂i

0, otherwise,
(4.3)

where s ∈ {1, 2}, {yi}Ti=1 are effort of testing examples, and {ŷi}Ti=1 and {σ̂i}Ti=1 are the

estimated means and STDs of probabilistic effort estimation of testing examples respec-

tively. (2) Compute the hit rate across all testing examples for the sth CL as

HitRates =
∑T
i=1 fs(yi)
T

, (4.4)

which is in line with CL0.6827 (CL0.9545) for s=1 (s=2). (3) If {HitRates}s∈{1,2} satisfies

the criteria: HitRate1 > 68.27% (HitRate2 > 95.45%), the PIs pass the validation.

Table 4.4 lists the hit rate in line with CL0.6827 and CL0.9545. We can see that the PIs

with CLs can often achieve good hit rate. For instance, only three PIs with CL0.6827 and

CL0.9545 (in yellow/light grey) cannot pass the validation with large magnitude.

Relative Width of PIs with CLs

Table 4.5 shows the median effort values, PIs with CL0.6827 and CL0.9545, and estimated

STD of the Gaussian effort noise modelling for each data set. The median values of PIs

are obtained by taking the median of lower/upper bound across all lower/upper bounds

of the PIs of the testing projects. This table presents a general idea of the derived PIs in

the context of SEE. We can see that the actual effort falls within the PIs with CL0.6827

and CL0.9545 for all data sets, showing the validation of the derived PIs.

We can also see that the PIs are relatively informative for the first seven data sets.

Taking Maxwell as an example, a project manager would have 68.27% confidence that

the actual effort will fall within the interval [3177, 7339]. Since the best MAE of SEE

methods is around 4000, being approximately equivalent to the width of PI with CL0.6827,

the derived PI is considered to be of practical use. However, the PIs in Org4∼Org7 are

78

Table 4.5: Examples of PIs of RVM in each data set. For each data set, the median of the
actual effort values, PIs with CL0.6827 and CL0.9545, and the estimated STDs are shown.
The listed PIs are obtained by taking the median across all lower/upper bounds of the
predicted effort values. This table provides a general idea of RVM’s PIs for SEE.

Data Set Actual effort PI (CL0.6827) PI (CL0.9545) Estimated STD
Maxwell 5190 [3177, 7339] [1170, 9379] 2128

Kitchenham 1557 [0, 4107] [0, 6407] 1784
Cocomo81 98 [81, 237] [21, 312] 70

Nasa93 252 [0, 492] [0, 755] 250
Org1 1213 [0, 3536] [0, 5861] 2465
Org2 2045 [1185, 2116] [694, 2564] 439
Org3 1090 [0, 3278] [0, 5119] 1779
Org4 3520 [0, 8382] [0, 12624] 4360
Org5 5506 [307, 12257] [0, 18645] 5281
Org6 2943 [0, 8024] [0, 12530] 4453
Org7 4456 [897, 12664] [0, 18569] 5904

too wide to be informative. Further studies found that the estimated STDs of the four

data sets are much larger, all greater than 4000, directly causing wide PIs.

Overall, the PIs of CLs derived by RVM can achieve relatively good hit rate, but they

can be too wide to be informative. Chapter 5 aims in the improvement on this issue.

4.5 Summary and Discussion

We introduce RVM to the context of SEE and present the way of deriving PIs with

CLs. The potential of RVM in the context of SEE has been validated by answering the

sub-research questions outlined in section 4.1 as follows.

• RQ2.1: How well does RVM perform compared to other SEE methods when used as

a point estimator? Experimental results show that RVM is very competitive compared

to other SEE methods, being usually ranked top two out of seven methods across 11 data

sets in terms of MAE. Friedman tests detect its significant superiority to MLP and show

similar performance with other SEE methods. Thus, RVM is a promising SEE method

and worthwhile for further investigation.

79

• RQ2.2: How to provide PIs with CLs based on RVM? How well can the PIs with CLs

derived from RVM perform? We provide the way of deriving PIs with CLs in section 4.2

and validate the PIs with two specific cases CL0.6827 and CL0.9545. Experimental results

show that the PIs can often achieve relatively good hit rate, but they can be too wide to

be informative. Thus, further studies should focus on providing better PIs with CLs.

In summary, this chapter has showed that RVM is a very promising SEE method and

should be further investigated. Specifically, we encourage future research in exploiting

and improving its PIs with CLs while retaining point prediction performance and hit

rate. Chapter 5 will focus on this issue.

80

CHAPTER 5

SynB-RVM: Synthetic Bootstrap Ensemble of RVMs

5.1 Introduction

Chapter 4 introduces a Bayesian regression model, namely RVM, as the first step to

implement PIs with CLs to tackle the data noise problem of SEE. Experimental results

have shown that when used as a point estimator, RVM is very competitive compared with

other SEE methods. But when used as an uncertain estimator, the derived PIs can be

too wide to be informative.

This chapter aims to develop a novel uncertain estimation approach based on RVM

for better PIs with CLs, answering the third research question of the thesis:

RQ3. Can we improve the PIs of the baseline RVM? How well is its perfor-

mance compared to the state-of-the-art point/uncertain methods?

On the one hand, the proposed PIs of CLs should be wide enough to capture the effort

of many software projects; on the other hand, they should be sufficiently narrow to be

informative and of practical use.
0This chapter corresponds to RQ3 in section 1.1.3, and is based on our submitted paper [172].

81

Inspired by the ensemble strategy that turns weak methods into a stronger one [8, 193],

we adopt Bootstrapping resampling to construct multiple ‘weak’ RVMs, each of which

is trained on part of the training examples. Due to sampling with replacement, the

Bootstrap training bag contains replicated training examples, making RVM incapable

of computing the inverse of the kernel matrix in the training phrase. To address this

problem, we replace the repeated training examples in each Bootstrap training bag with

their synthetic counterparts. We also propose three ways of incorporating RVMs into a

single one for a ‘stronger’ and ‘better’ final uncertain estimation. We name our method

as Synthetic Bootstrap ensemble of RVMs (SynB-RVM).

To accomplish the answer to RQ3 of the thesis, we further divide this research question

into the following three sub-research questions:

• RQ3.1: When used as a point estimator, how well can SynB-RVM perform compared

with other SEE methods?

• RQ3.2: When used as an uncertain estimator, can SynB-RVM’s PIs achieve ade-

quate hit rate with narrower and more informative PIs? This can be divided into

two sub-questions: (1) can the PIs adequately cover the effort of testing projects?

And (2) are the PIs sufficiently narrow to be informative and of practical use?

• RQ3.3: If SynB-RVM can improve the point and uncertain estimation of its base-

line RVM, which components of SynB-RVM contribute to the point and uncertain

prediction performance improvement?

Answering RQ3.1 allows us for the information that how promising SynB-RVM is in terms

of point prediction performance compared with other SEE methods. Answering RQ3.2 is

our main objective that evaluates how well our goal of developing a ‘better’ uncertain effort

estimator has been achieved. Answering RQ3.3 enables us to gain a better understanding

of our proposed uncertain effort estimator and to find the reasons why it outperforms its

base learner.

82

Experimental results show that when used as a point estimator, our method can either

significantly outperform or have similar performance compared to other SEE methods.

When used as an uncertain estimator, SynB-RVM can achieve significantly narrower (and

thus more informative) PIs compared to the baseline RVM. The hit rate and relative width

are no worse than other uncertain effort estimators. Overall, SynB-RVM is effective in

improving uncertain prediction while offering competitive point prediction performance.

The main contribution of this chapter is to propose and validate SynB-RVM in terms

of point and uncertain prediction. Moreover, we present a thorough comparison between

SynB-RVM and state-of-the-art uncertain effort estimators (section 2.2). To the best of

our knowledge, this is the most thorough experimental comparison on this topic.

The remaining of this chapter is organized as follows. Section 5.2 proposes our uncer-

tain estimator for the training phase in subsection 5.2.1 and for the prediction phase in

subsection 5.2.2. Section 5.3 describes the experimental design. Experimental results for

answering RQ3.1 and RQ3.2 are discussed in section 5.4. Section 5.5 studies the effec-

tiveness of the three components of SynB-RVM, answering RQ3.3. Section 5.6 discusses

its implications to practice, providing a deeper understanding on our proposed method

and guidelines on the choice of uncertain SEE methods. This chapter is concluded and

further discussed in section 5.7.

5.2 SynB-RVM: The Proposed Uncertain Estimator

This section proposes an uncertain SEE method that adopts Bootstrap resampling to

produce multiple RVMs and incorporate them for better prediction performance. The idea

is similar to that of ensemble learning where several ‘weak learners’ can be incorporated for

a ‘stronger’ one [8, 193]. In this sense, each Bootstrap bag emphasizes certain parts of the

training space and prompts a well-behaved SEE method in this subspace. Incorporating

those constructed methods may lead to an overall good uncertain prediction

83

5.2.1 Training Phase of SynB-RVM

Consider a training set of N software projects D = {(xn, yn)}Nn=1, where xn ∈ RD denotes

the input features of the nth training example and yn denotes its output effort. In the

training phase, several RVMs are trained with the following three steps.

Step 1. Bootstrap Training Bag Construction

By using Bootstrap resampling with replacement on the original data set D , SynB-RVM

creates M Bootstrap training bags of size N , denoted as {D (m)}Mm=1. Sampling with

replacement is reasonable for SEE because it is a small data problem, and thus resampling

will not take an excessive amount of time. Each Bootstrap bag D (m) will be used to develop

one RVM estimator, and we will have M trained RVMs.

Step 2. Synthetic Project Displacement

D (m) is highly likely to contain duplicated training examples due to sampling with re-

placement to create training bags of size N . The replicated projects will cause invert-

ibility problem of the kernel matrix when training RVMs [177]. To this end, we propose

a displacement technique to generate synthetic counterparts for these repetitions. The

effectiveness of this displacement technique will be verified in section 5.5.2.

Suppose that a training example (x, y) ∈ D (m) has been resampled K times. Retain

one copy and displace the others along certain directions to form (K-1) different synthetic

software projects as shown in algorithm 3. It can be interpreted as a shift of the replicated

project towards a different but similar data cloud in the training space. After replacing

all repeated training examples, we obtain a non-repeatable revised Bootstrap bag D (m).

The reasons for displacing a repeated training example along its furthest neighbour are

twofold. (1) Choosing the furthest neighbour suggests a more diverse Bootstrap training

bag and thus is more likely to relieve the invertibility problem. This may also enhance the

capability of the method for heterogeneous SEE data. (2) Disturbance of the repeated

84

Algorithm 3 Synthetic project displacement of SynB-RVM.

1: Input: (1) A software project (x, y) that has been resampled K times in D (m), and (2) the
initial training pool D ′ = D .

2: Aim: Retain one copy of (x, y) and replace its K-1 repetitions with synthetic counterparts.
3: Procedures:
4: (1) Find the furthest neighbour x′ of x in D ′ according to Euclidean distance. To avoid

scalability problem, each feature is standardized to have zero-mean and unit-variance.
5: (2) A synthetic counterpart is produced as a linear combination of (x, y) and (x′, y′) as{

xsyn = (1− ρ)x + ρx′,
ysyn = (1− ρ)y + ρy′,

where the parameter ρ ∈ (0, 1) controls the displacement degree.
6: (3) Replace one copy of (x, y) with (xsyn, ysyn) in D (m). Reset D ′ to be {D ′ − (x′, y′)}.
7: (4) Repeat step (1)∼(3) until K-1 repetitions are replaced by their synthetic counterparts.
8: Output: The revised Bootstrap bag D (m) with non-repeatable project (x, y).

software project based on another real SEE data can avoid the synthetic project to be

too far away from the actual data. Moreover, small displacement parameter ρ is confined

to further prevent too large deviation of the synthetic project from the actual one.

It is noteworthy that our data generator in chapter 3 produces one synthetic project

based on one training example, which is more likely to stay in the same ‘data cloud’ as the

expectation of the generated synthetic project stays the same. Therefore, the synthetic

data generation approach in chapter 3 cannot be directly used in this chapter for being

incapable of addressing the invertibility problem of the kernel matrix.

The synthetic counterpart of this chapter may not and are not necessary to be com-

posed of ‘real’ software features. For instance, some synthetic feature may be decimal

for an ordinal feature due to a linear combination of two integers. To keep the notation

simple, we use {D (m)} to denote the revised Bootstrap bags from this point onwards.

Step 3. RVM Training

The last step of the training phase is to train RVM models from Bootstrap training

bags {D (m)}. An RVM is trained on one Bootstrap training bag D (m) using the training

procedure described in appendix A.2. The M RVM models can be trained in parallel.

85

Algorithm 4 Training phase of SynB-RVM.
1: Aim: Train M RVMs that are used in prediction phase.
2: Input: (1) Training software projects D = {(xn, yn)}Nn=1, (2) the number of Bootstrap bags
M and (3) the degree of synthetic displacement ρ.

3: Procedures
4: (1) Bootstrap Training Bag Construction: Create M Bootstrap training bags from the

data set D by using Bootstrap resampling with replacement.
5: (2) Synthetic Project Generation: For each Bootstrap training bag, replace the repeated

training examples with their synthetic counterparts as algorithm 3.
6: (3) RVM Training: Train M RVM models, each of which is based on one revised Bootstrap

training bag. The M RVM models can be trained in parallel.
7: (4) Calculate the training errors of the M RVM models according to some performance

metric.
8: Output: (1) M trained RVM models and (2) their training errors.

The training phase of SynB-RVM is summarised in algorithm 4.

5.2.2 Prediction Phase of SynB-RVM

For a testing software project x with unknown effort y, the prediction phase aims to

provide PIs with CLs that are wide enough to capture its actual effort and at the same

time sufficiently narrow to be informative of practical use based on the trained RVMs. A

second aim of prediction phase is to provide a competitive point estimate in comparison

with RVM-related methods and SEE methods that have been shown to perform well. Our

prediction phase consists of the following 4 steps.

Step 1. Bootstrap Uncertain Estimates

From the trained RVM models, we can obtain M Gaussian PDFs {N (y(m), σ(m))} as

the probabilistic estimates for the testing example x, where each y(m) and σ(m) are the

Gaussian mean and STD respectively for Bootstrap bag D (m). To generate the final

probabilistic prediction, we will combine these PDFs. As Gaussian distribution is uniquely

determined by its mean and STD, this issue can be simplified into combining M pairs of

{(y(m), σ(m)}.

86

Algorithm 5 Prediction phase of SynB-RVM.
1: Aim: Provide the PI with a CL for a testing example.
2: Input: (1) CLα, (2) the testing example x, (3) the trained RVM models, (4) the training

errors of these RVM models, and (5) the pruning rate τ .
3: Procedures
4: (1) Bootstrap Uncertain Estimates: Compute the M Gaussian PDFs of the testing exam-

ple x using the trained RVMs and denote them as {N (y(m), σ(m))}Mm=1.
5: (2) Bootstrap Estimate Pruning: Prune those RVMs with (a) negative estimated mean

values, and (b) bad training performance in term of MAE.
6: (3) Final Probabilistic Prediction: Three methods to calculate the final probabilistic es-

timation of the testing example using one of the equations (5.1)∼(5.3).
7: (4) PI Construction: Convert the Gaussian PDF of the estimated effort values to CDF

and derive the PI [ylb, yub] with CLα using Eq. (5.4) or Eq. (5.5).
8: Output: PI [ylb, yub] with CLα.

Step 2. Bootstrap Estimate Pruning

Before framing the final prediction, we note that: (1) some {y(m)} may be improperly

negative due to the base learner RVMs being weak models, and (2) the estimates from

some Bootstrap bags may not perform well in the training set and are improper to be

retained in the prediction phase. Thus, it would be reasonable to prune these improper

Bootstrap bags before constructing the final estimation.

Case 1. Pruning RVM Bags with Negative Estimated Mean. According to the domain

knowledge of SEE, the effort values should be positive, and thus those bags with negative

point estimates will be pruned.

Case 2. Pruning RVM Bags with Bad Training Performance. According to ML theory,

high training error usually indicates bad prediction performance [25], and thus those bags

with high training errors will be pruned. We rank Bootstrap bags according to their

point prediction performance on training examples, and prune those bags among the

worst τ ∈ [0, 1] percentage. People can choose the pruning performance metric based on

practical preference. In our implementation, we use MAE in line with our main evaluation

metric. Denote M ′ 6M as the number of remaining Bootstrap bags.

87

Step 3. Final Probabilistic Prediction

We derive the final probabilistic prediction in three ways based on {(y(m), σ(m))}M ′m=1.

Case 1. Empirical Mean. One of the simplest ways to derive the final probabilistic

estimation is the sample means of these Bootstrap estimates as
ŷ = 1

M ′
∑M ′

m=1 y
(m),

σ̂ = 1
M ′

∑M ′

m=1 σ
(m).

(5.1)

We are aware that the integration of multiple Gaussian PDFs is a Gaussian mixture model

with multiple peaks [14, 191]. However, we assume the mixture to be a uni-peak Gaussian

PDF by treating each individual PDF as one sampling of an underlying Gaussian PDF.

Experimental results in section 5.4 justify the effectiveness of this treatment. Further

exploitation into the Gaussian mixture model to derive PIs is left for future work.

Case 2. Uni-variant Empirical PDFs. We simulate the PDFs of {y(m)} and {σ(m)}

based on the estimates of the trained RVM models. Then, we set the mean and STD

of the final probabilistic estimate as the expectation of those two PDFs respectively.

Specifically, develop the frequency histogram of {y(m)} ({σ(m)}), where the number of

bins B is automatically determined by the binning algorithm1 with uniform width that

can cover the range of elements and reveal the underlying shape of the distribution. Then,

characterize the bth bin by its middle point y(b) (σ(b)) and calculate its frequency fy(b)

(fσ(b)). Finally, the mean and STD of the final probabilistic estimation are calculated as
ŷ = E{y(b)} = ∑B

b=1 y(b) · fy(b),

σ̂ = E{σ(b)} = ∑B
b=1 σ(b) · fσ(b).

(5.2)

Case 3. Bi-variant Empirical PDFs. Similar to Eq. (5.2), this method is also based

on empirical PDFs. However, bi-variant empirical PDF is used, so that the correlation

between y and σ can be taken into account. First, develop the 2D frequency histogram for
1See Matlab’s histogram() function.

88

{(y(m), σ(m))}, denoted by f(y,σ)(b1, b2), where the numbers of bins (B1, B2) are automati-

cally determined by the binning algorithm1 to cover the data range and reveal the shape

of the underlying distribution. Then, characterize each rectangle bin by its geometric

middle point {(y(b1), σ(b2))} and calculate its frequency f(y,σ)(b1, b2). Finally, mean and

STD of the final probabilistic estimation are calculated as

(ŷ, σ̂) = E{(y(b1), σ(b2))} =
∑
b1,b2

(y(b1), σ(b2)) · f(y,σ)(b1, b2). (5.3)

Step 4. Prediction Intervals Construction

Denote ŷ as the final estimated mean and σ̂ as the final estimated STD from one of

the equations (5.1)∼(5.3). Since the final estimated effort values follows the Gaussian

distribution N (ŷ, σ̂), the PI with CLα can be calculated as

PIα = [max{0,F−1(1− α
2)},F−1(1 + α

2)], (5.4)

where F−1(β) denotes the effort value located on the β-percentile of this Gaussian CDF.

In particular, based on “68-95-99.7” rule of Gaussian distribution [191], the PIs with

CL0.6827, CL0.9545, and CL0.9973 can be simply derived as

[max(0, ŷ − jσ̂), ŷ + jσ̂], (5.5)

for j ∈ {1, 2, 3} respectively. Note that we could also derive PIs with CL0.6827, CL0.9545,

and CL0.9973 according to Eq. (5.4) and it is just easier when derived by Eq. (5.5). The

testing phase of SynB-RVM is summarized in algorithm 5.

5.3 Experimental Design

The experiments are designed to answer RQ3.1-RQ3.3 in section 5.1. To answer RQ3.1,

section 5.4.1 compares SynB-RVM and other SEE methods in terms of point prediction
1See Matlab’s histcounts2() function.

89

performance. To answer RQ3.2, section 5.4.2 compare SynB-RVM and other uncertain

methods in terms of hit rate and relative width to investigate whether SynB-RVM can

improve uncertain prediction performance. To answer RQ3.3, section 5.5 studies SynB-

RVM and its variants to explore which components of SynB-RVM are more effective for

better point/uncertain prediction performance.

5.3.1 Data Sets

Experimental analyses of this chapter are based on the same data sets in section 4.3.1.

Table 4.1 contains basic description of these data sets.

5.3.2 Performance Evaluation

Performance metrics in this chapter include MAE, MdAE, LSD, and SA for point predic-

tion (section 2.4.2) and hit rate and relative width for uncertain prediction (section 2.4.3).

We apply 30 runs of 10 fold CV to validate the performance of SEE methods. The

procedure is to repeat 30 times 10-fold CV with different sampling orders, for alleviating

the impact of training example orders and Bootstrap displacement. The 10-fold CV is

adopted because SEE data sets are usually small and there would be high bias if using

small k (e.g. k = 2 in k-fold); whereas large k, such as leave-one-out with k equal to the

size of data, may result in high variance [69]. The process is repeated 30 times (rather

than 10) for stable overall prediction performance since SynB-RVM has more tuning

parameters (than RVM).

We report the results using the model parameters that achieve the best point prediction

performance based on the 30 runs of 10 fold CV, indicating the best performance the

investigated approaches can achieve. All analyses and statistical tests are based on the

mean performance across 30 runs, each corresponding to one 10-fold CV. We use no

further spare testing sets for the same reasons as in section 4.3.2.

90

5.3.3 Point Estimation Benchmark Methods

This chapter will evaluate the performance of SynB-RVM as a point estimator against

the state-of-the-art point SEE estimators including RVM, ATLM, k-NN, MLP, RT, SVR,

Bagging with RVM (Bagging+RVM), Bagging with ATLM (Bagging+ATLM), Bagging

with RT (Bagging+RT), and Bagging with SVR (Bagging+SVR). As long as SynB-RVM

performs no worse (hopefully better) than them in terms of point estimates, its superiority

can be justified considering the additional uncertain prediction provided.

RVM is chosen for being the baseline of the proposed method. ATLM is a newly pro-

posed SEE benchmark and having been shown to performance well [188]. K-NN is chosen

for being among the most popular SEE models, and due to its simplicity and intuitive

interpretation that mimics the human instinctive decision-making [169, 165, 122, 114].

Several empirical studies showed its comparable and sometimes superior performance to

other SEE models [165, 87, 122, 9, 114]. ANNs have been widely used in SEE, and MLP

are the most common form of ANN [76]. RT are chosen for being among the most fre-

quently used SEE models and having potential advantage for SEE [136, 187]. SVR is

designed for small data problems [55], and existing work implies that it is suitable to SEE

[146, 160, 146, 41]. There are several choices for SVR kernel, and linear kernel is adopted

for being a better choice for SEE [146]. Bagging+RVM plays as an ensemble baseline of

the proposed SynB-RVM, and Bagging+ATLM is expected to perform well due to the

good performance of its base model. Bagging+RT have shown to be frequently among

the best approaches across different data sets and rarely perform considerably worse than

the best approach for any data set [136]. Bagging+SVR has shown to be more accurate

than those based on other base learners such as MLP [76].

As discussed in appendix A.1.3, one potential issue of ATLM is that it may suffer

certain numerical problems while giving effort estimate for some testing projects. For

instance, it may produce an extremely large or even infinite effort prediction for a testing

91

example. To circumvent this numerical issue, we set up a threshold for predicted effort

value of ATLM at the value of 106. Those estimates that surpass this threshold will not

take part in performance evaluation for ATLM. The threshold is reasonable because the

actual effort values of the investigated data sets are much smaller than it. This treatment

is actually giving advantage to ATLM-related methods in the performance comparison.

5.3.4 Prediction Interval Benchmark Methods

We select three categories of uncertain methods in sections 2.2.1, 2.2.2, and 2.2.4 to justify

the uncertain performance of SynB-RVM. The methods in section 2.2.3 are not included

because they do not provide intervals that are specific to the project being predicted.

Other methods in sections 2.2.4 and 2.2.5 are not compared because they cannot provide

PIs and are thus out of the scope of this chapter. As discussed in chapter 4 and ap-

pendix A.2, RVM can also provide PIs with CLs, and is thus included in this comparison.

Our implementation of the three groups of uncertain SEE methods is described below.

RVM

As SynB-RVM uses RVM as its base leaner and RVMs have shown competitive perfor-

mance against state-of-the-art point estimators in chapter 4, we compare our uncertain

approach against RVM in terms of both point and uncertain prediction.

RVM-/ATLM-Based Bootstrap Wrapped PIs

Section 2.2.1 describes previous work on this category and clarifies their major differences

to SynB-RVM. This section details our implementation and denotes RVM-based (ATLM-

based) Bootstrap wrapped methods by BtstrpRVM (BtstrpATLM).

We choose Laqrichi et al. [118]’s method as the implementation for this category

because it does not present the issues of other Bootstrap methods: it provides PIs but

not CIs as Angelis and Stamelos’s [9], and it does not require expert knowledge as Klas

et al.’s [104]. Our implementation follows the same procedures as Laqrichi et al.’s [118]

92

except that the base learner we use is RVM/ATLM instead of MLP. RVM is used for

a fair comparison with the proposed RVM-based method. The replacement with RVM

may even improve the performance because RVM has been shown to outperform MLP

for point estimates [170]. ATLM is also used so that BtstrpATLM plays as a baseline for

uncertain prediction.

Our implementation for Laqrichi et al. [118]’s method is as follows: (1) Generate a

number of M training sets via Bootstrap resampling, where M is a parameter of this

baseline method. (2) For each resampled training set, build a RVM/ATLM model and

only consider their point predictions. Hereafter, we have M trained RVM/ATLM models.

(3) To predict a testing example, we can get M point estimates from the RVM/ATLM

models. (4) The point prediction produced by the previous step composes a distribution

that can be used to compute the PI for the testing example corresponding to the CL

α. The PI is given by [e(1−α)/2, e(1+α)/2], where e(1−α)/2 and e(1+α)/2 are the effort values

corresponding to the (1−α)
2 % and the 1+α

2 % percentiles of the distribution respectively.

RVM-/ATLM-Based Empirical Error PIs

Section 2.2.2 describes previous uncertain methods on this category and clarifies their

major differences with respect to our method. We detail our implementation and denote

RVM-based (ATLM-based) empirical error-based methods by EmpRVM (EmpATLM).

We follow the procedures of the empirical version of Jørgensen and Sjøberg’s [90] except

that: (1) the base learner is RVM/ATLM instead of MLR, and (2) all training examples

are used for prediction as the training set is too small for further selection. EmpRVM is

built for a fair comparison to our method, and EmpATLM plays as a baseline for uncertain

prediction. The replacement of ATLM with MLR can even improve the point prediction

performance since ATLM has been shown to outperform MLR [188].

Our implementations for uncertain prediction work as follows: (1) Build the RVM/ATLM

model based on all training examples. (2) Calculate the empirical (training) error dis-

93

tribution measured by Balanced Relative Error (BRE) that is defined for each training

example:

BRE =


(Act− Est)/Act, Act 6 Est,

(Act− Est)/Est, Act > Est,
(5.6)

where Act/Est is the actual/estimated effort of the training example. Here, we have a

number of BREs, each corresponding to one training example. (3) Calculate the empirical

distribution of the training errors based on α-percentiles of those BREs, where α is the

corresponding CL. Specifically, we use the percentile (1−α)/2 as the minimum BRE value

and the percentile (1 + α)/2 as the maximum BRE value. (4) The lower bound (lowB)

and upper bound (upB) of effort PI with CL α for a testing example are calculated using

the decided minimum and maximum BRE values as

lowB/upB =


Est′ ÷ (1−BRE), BRE 6 0

Est′ × (1 +BRE), BRE > 0
(5.7)

where Est′ denotes the point prediction of the testing example from RVM/ATLM.

Note that as a point estimator, the prediction of EmpRVM/EmpATLM equals to that

of RVM/ATLM precisely. They differ only in the capabilities of constructing PIs.

5.3.5 Parameter Settings

The parameter values of the methods investigated in this chapter are shown in table 5.1.

In particular, there are 4 tuning parameters for the proposed SynB-RVM: (1) the basis

width c in RVM, (2) the number of Bootstrap bags M , (3) the degree of displacement in

synthetic project generation ρ in Sec. 5.2.1 and (4) the pruning rate τ in Sec. 5.2.2. Our

analyses are based on the performance with the optimal parameter combinations.

For RVM, its parameter c has been chosen from the values counting from 0.1 to 15

with step 0.2 (i.e. {0.1 : 0.2 : 15}). Deciding the optimal c for RVM, other RVM-related

methods have their specific parameters tuned based on grid search while keeping c fixed,

for being considered as possible ways of improving the baseline performance of RVM.

94

Table 5.1: Parameter values of the investigated SEE methods for SynB-RVM. The inte-
gers in parentheses are the numbers of investigating parameter values. The amount of
parameter settings is designed to be similar among base learners, and to have three values
for the Bagging ensemble.

Approach Parameters
RVM c (width) = {0.1 : 0.2 : 15} (#75)

BtstrpRVM c: Use the optimal c from RVM
M (Bootstrap bags) = {30, 50, 80} (#3)

BtstrpATLM M (Bootstrap bags) = {30, 50, 80} (#3)
EmpRVM c: Use the optimal c from RVM

SynB-RVM

c: Use the optimal c from RVM
M (Bootstrap bags) = {30, 50, 80} (#3)
ρ (synthetic displace) = {0.01, 0.1, 0.3} (#3)
τ (prune rate) = {0, 0.1, 0.2} (#3)

k-NN k (#neighbour) = {1 : 1 : 75} (#75)

RT
L (max tree depth) = {−1, 2, 6, 10} (#4)
M (min #node per leaf) = {1, 2, 4, 6} (#4)
E (stopping error) = {0.0001, 0.001, 0.01, 0.1, 0.5} (#5)

SVR
kernel = ‘linear’
C (regularization) = {0.01, 0.05, 0.1, 0.2, 0.5, 1, 2, 5, 10} (#9)
ε (slack variables) = {0.01, 0.02, 0.05, 0.1, 0.2, 0.3, 0.5, 1} (#8)

MLP
L (learning rate) = {0.1, 0.3 ,0.5} (#3)
M (Momentum) = {0.1, 0.3, 0.5} (#3)
N (#epochs) = {100, 500, 1000} (#3)
H (#hidden nodes) = {1, 5, 9} (#3)

Bagging with M (Bootstrap bags) = {30, 50, 80} (#3)
RVM, ATLM, RT and SVR Use the best parameter setting of the base learners

ATLM and EmpATLM do not have tuning parameters. For RT, the maximum tree depth

−1 means the unlimited tree depth. For SVR, the conventional settings for regularization

parameter C and slack variable ε are used [41, 140].

For a fair comparison, the number of parameter settings of the base learners is similar

to that of RVM. Similar to those RVM-based methods, Bagging with RVM, ATLM, RT

and SVR have their specific parameters tuned based on grid search while keeping the

optimal parameter settings of the based learners fixed.

95

5.4 Evaluation of the Proposed SynB-RVM

This section aims to evaluate our SynB-RVM compared with other SEE methods of sec-

tions 5.3.3 and 5.3.4 in terms of point prediction. Hereafter, the three versions of our

method in section 5.2.2 are denoted as SynB-RVM SpMn, SynB-RVM 1Dhist, and SynB-

RVM 2Dhist respectively.

5.4.1 Evaluation of Point Estimation

This subsection aims to answer RQ3.1 outlined in section 5.1: When used as a point esti-

mator, how well can SynB-RVM perform compared with other SEE methods? Note that

we have four RVM-related methods: RVM, EmpRVM, BtstrpRVM, and Bagging+RVM;

similarly, we have four ATLM-related methods: ATLM, EmpATLM, BtstrpATLM, and

Bagging+ATLM. However, point prediction of EmpRVM/EmpATLM/BtstrpRVM/Bt-

strpATLM equals to that of RVM/ATLM/Bagging+RVM/Bagging+ATLM respectively

Tables 5.2(a)∼5.2(d) list the performance in terms of MAE, MdAE, LSD, and SA. We

perform Friedman tests for statistical comparisons of all methods across all data sets. The

null hypothesis (H0) states that all methods are equivalent in terms of point prediction

performance. The alternative hypothesis (H1) states that at least one pair of methods

differs. The Friedman test with the significance level 0.05 rejects H0 with the p-values

3.11× 10−13, 4.11× 10−10, 0 and 3.38× 10−11 for MAE, MdAE, LSD and SA respectively.

Friedman tests provide rankings of the methods computed by Eq. (B.6). Let r(i)
j be

the rank of the j-th method on the i-th data set, and N be the number of data sets. The

average rank of method j is calculated as

Rj = 1
N

∑
i

r
(i)
j . (5.8)

The average ranks provide a reasonable idea of how SEE methods compare to each other

given rejection of the null hypothesis [50]. In table 5.2, the integer in parentheses along

96

Ta
bl

e
5.

2:
P

oi
nt

pr
ed

ic
ti

on
pe

rf
or

m
an

ce
of

SE
E

m
et

ho
ds

in
te

rm
s

of
M

A
E

,M
dA

E
,L

SD
,a

nd
SA

.T
he

re
po

rt
ed

va
lu

es
ar

e
th

e
m

ea
n

of
30

ru
ns

of
10

-fo
ld

C
V

.T
he

fir
st

th
re

e
co

lu
m

ns
co

rr
es

po
nd

th
e

th
re

e
ve

rs
io

ns
of

ou
r

m
et

ho
d.

T
he

ra
nk

s
of

an
SE

E
m

et
ho

d
at

ea
ch

da
ta

se
t

ar
e

in
pa

re
nt

he
se

s.
T

he
la

st
ro

w
lis

ts
th

ei
r

av
er

ag
e

ra
nk

±
ST

D
,

w
he

re
si

gn
ifi

ca
nt

di
ffe

re
nc

e
of

Fr
ie

dm
an

te
st

s
ac

ro
ss

al
l

da
ta

se
ts

is
hi

gh
lig

ht
ed

in
ye

llo
w

(l
ig

ht
gr

ey
).

E
ffe

ct
si

ze
ac

ro
ss

30
ru

ns
of

ea
ch

da
ta

se
t

ag
ai

ns
t

th
e

co
nt

ro
lm

et
ho

d
is

co
m

pu
te

d.
Sy

nB
-R

V
M

2D
hi

st
is

ch
os

en
as

th
e

co
nt

ro
lm

et
ho

d
as

of
te

n
ha

vi
ng

th
e

be
st

av
er

ag
e

ra
nk

am
on

g
th

e
th

re
e

ve
rs

io
ns

.
C

el
ls

in
gr

ee
n

(l
ig

ht
gr

ey
)/

or
an

ge
(d

ar
k

gr
ey

)
in

di
ca

te
be

tt
er

or
w

or
se

pe
rf

or
m

an
ce

ag
ai

ns
t

th
e

co
nt

ro
lm

et
ho

d
w

it
h

m
ed

iu
m

/l
ar

ge
eff

ec
t

si
ze

.

(a
)

P
oi

nt
p

er
fo

rm
an

ce
of

al
l

in
ve

st
ig

at
ed

m
et

ho
ds

in
te

rm
s

of
M

A
E

.

D
at

a
Se

t
Sy

nB
-R

V
M

Sy
nB

-R
V

M
Sy

nB
-R

V
M

R
V

M
B

ts
tr

pR
V

M
A

T
L

M
B

ts
tr

pA
T

L
M

k
-N

N
SV

R
M

L
P

R
T

B
ag

gi
ng

+
R

T
B

ag
gi

ng
+

SV
R

Sp
M

n
1D

hi
st

2D
hi

st
(E

m
pR

V
M

)
(B

ag
gi

ng
+

R
V

M
)

(E
m

pA
T

L
M

)
(B

ag
gi

ng
+

A
T

L
M

)
M

ax
w

el
l

39
64

.0
(2

)
39

65
.3

(3
)

39
49

.2
(1

)
41

93
.4

(6
)

40
67

.3
(4

)
40

85
.9

(5
)

66
44

.5
(1

3)
43

25
.0

(8
)

53
60

.0
(1

1)
64

36
.5

(1
2)

41
96

.5
(7

)
44

04
.7

(9
)

53
15

.9
(1

0)
K

it
ch

en
ha

m
16

82
.6

(5
)

16
74

.6
(4

)
16

68
.6

(3
)

17
25

.9
(6

)
17

79
.1

(7
)

16
03

.6
(2

)
13

89
.7

(1
)

17
84

.2
(8

)
22

30
.2

(1
1)

23
99

.7
(1

3)
19

89
.8

(1
0)

18
79

.3
(9

)
22

31
.5

(1
2)

C
oc

om
o8

1
55

3.
4(

3)
55

3.
9(

4)
55

4.
1(

5)
56

9.
7(

10
)

56
6.

9(
7)

25
4.

7(
1)

27
7.

2(
2)

59
6.

5(
12

)
56

8.
6(

8)
74

4.
9(

13
)

58
9.

9(
11

)
56

4.
3(

6)
56

8.
8(

9)
N

as
a9

3
33

9.
4(

3)
34

0.
7(

5)
34

0.
4(

4)
35

5.
5(

6)
33

2.
8(

2)
27

1.
4(

1)
44

7.
7(

12
)

43
8.

6(
11

)
36

9.
3(

7)
60

2.
8(

13
)

41
4.

6(
10

)
37

6.
1(

9)
37

5.
8(

8)
O

rg
1

30
87

.7
(7

)
30

59
.1

(6
)

29
41

.4
(4

)
28

68
.7

(3
)

30
43

.6
(5

)
26

33
.6

(1
)

26
75

.2
(2

)
31

04
.1

(8
)

33
23

.9
(1

1)
35

61
.2

(1
3)

33
70

.9
(1

2)
32

15
.7

(9
)

33
21

.3
(1

0)
O

rg
2

16
87

.1
(1

)
16

89
.2

(2
)

16
96

.7
(3

)
17

28
.2

(6
)

17
26

.6
(5

)
17

18
.3

(4
)

17
46

.5
(7

)
17

73
.3

(8
)

18
33

.3
(9

)
21

34
.5

(1
3)

20
04

.6
(1

2)
19

98
.5

(1
1)

18
56

.4
(1

0)
O

rg
3

10
23

.7
(7

)
10

51
.9

(8
)

10
67

.0
(9

)
10

05
.7

(5
)

10
84

.0
(1

0)
95

2.
4(

1)
95

4.
9(

2)
99

3.
4(

3)
12

08
.2

(1
1)

15
43

.6
(1

3)
99

9.
3(

4)
10

08
.1

(6
)

12
11

.7
(1

2)
O

rg
4

36
85

.7
(3

)
36

62
.9

(2
)

36
54

.6
(1

)
36

89
.0

(4
)

37
69

.3
(5

)
38

08
.7

(7
)

39
10

.5
(8

)
37

88
.8

(6
)

41
09

.0
(1

0)
46

57
.9

(1
3)

43
94

.7
(1

2)
42

93
.6

(1
1)

40
94

.9
(9

)
O

rg
5

54
88

.6
(8

)
52

52
.2

(6
)

51
83

.3
(5

)
58

62
.7

(9
)

58
76

.9
(1

0)
37

34
.7

(2
)

30
57

.4
(1

)
53

90
.8

(7
)

64
11

.6
(1

1)
75

33
.4

(1
3)

47
25

.4
(4

)
46

81
.8

(3
)

67
05

.2
(1

2)
O

rg
6

27
72

.2
(8

)
26

97
.1

(4
)

27
01

.5
(5

)
27

41
.1

(7
)

29
58

.3
(9

)
47

31
.1

(1
3)

27
18

.2
(6

)
25

41
.4

(3
)

35
05

.1
(1

0)
35

27
.2

(1
1)

25
08

.2
(1

)
25

25
.4

(2
)

36
56

.3
(1

2)
O

rg
7

48
35

.9
(7

)
48

29
.5

(6
)

48
46

.8
(8

)
48

97
.4

(1
0)

49
51

.6
(1

1)
43

78
.8

(2
)

45
83

.9
(4

)
40

07
.3

(1
)

47
45

.7
(5

)
51

92
.9

(1
3)

44
67

.9
(3

)
48

77
.5

(9
)

51
40

.1
(1

2)
av

eR
an

k
4.

91
±

2.
59

4.
55
±

1.
86

4.
36
±

2.
50

6.
55
±

2.
30

6.
82
±

2.
89

3.
55
±

3.
70

5.
27
±

4.
31

6.
82
±

3.
37

9.
45
±

2.
02

12
.7

3±
0.

65
7.

82
±

4.
14

7.
64
±

3.
01

10
.5

5±
1.

51

(b
)

P
oi

nt
p

er
fo

rm
an

ce
of

al
l

in
ve

st
ig

at
ed

m
et

ho
ds

in
te

rm
s

of
M

dA
E

.

D
at

a
Se

t
Sy

nB
-R

V
M

Sy
nB

-R
V

M
Sy

nB
-R

V
M

R
V

M
B

ts
tr

pR
V

M
A

T
L

M
B

ts
tr

pA
T

L
M

k
-N

N
SV

R
M

L
P

R
T

B
ag

gi
ng

+
R

T
B

ag
gi

ng
+

SV
R

Sp
M

n
1D

hi
st

2D
hi

st
(E

m
pR

V
M

)
(B

ag
gi

ng
+

R
V

M
)

(E
m

pA
T

L
M

)
(B

ag
gi

ng
+

A
T

L
M

)
M

ax
w

el
l

21
04

.4
(1

)
21

05
.3

(2
)

21
09

.6
(3

)
21

76
.6

(6
)

22
20

.0
(8

)
21

16
.1

(4
)

22
59

.2
(9

)
21

46
.0

(5
)

30
22

.6
(1

2)
34

99
.2

(1
3)

21
80

.3
(7

)
26

02
.4

(1
0)

30
05

.9
(1

1)
K

it
ch

en
ha

m
52

7.
2(

2)
52

9.
0(

4)
52

8.
5(

3)
64

3.
3(

8)
71

7.
9(

10
)

58
6.

7(
6)

57
5.

4(
5)

47
3.

1(
1)

80
7.

2(
11

)
85

6.
1(

13
)

62
3.

0(
7)

65
6.

2(
9)

83
7.

7(
12

)
C

oc
om

o8
1

77
.1

(8
)

76
.2

(6
)

76
.1

(5
)

91
.9

(1
0)

76
.5

(7
)

33
.3

(1
)

37
.1

(2
)

74
.6

(4
)

78
.8

(9
)

17
2.

7(
13

)
67

.2
(3

)
10

9.
8(

11
)

12
1.

0(
12

)
N

as
a9

3
96

.3
(6

)
97

.4
(8

)
96

.9
(7

)
10

0.
1(

9)
86

.5
(4

)
66

.8
(1

)
68

.3
(2

)
14

7.
3(

12
)

11
1.

1(
10

)
28

3.
0(

13
)

84
.7

(3
)

95
.6

(5
)

11
5.

9(
11

)
O

rg
1

60
3.

8(
11

)
60

2.
3(

9)
60

3.
8(

10
)

57
4.

5(
6)

53
2.

3(
4)

48
8.

5(
2)

49
2.

0(
3)

44
8.

7(
1)

54
6.

3(
5)

71
2.

4(
13

)
60

0.
2(

8)
64

5.
4(

12
)

59
5.

2(
7)

O
rg

2
67

4.
0(

2)
67

9.
4(

4)
68

7.
2(

5)
62

4.
8(

1)
67

5.
4(

3)
79

7.
3(

6)
83

1.
9(

9)
81

3.
2(

7)
82

8.
4(

8)
10

15
.4

(1
1)

10
52

.6
(1

2)
12

19
.5

(1
3)

90
8.

9(
10

)
O

rg
3

41
4.

7(
5)

41
4.

9(
6)

41
3.

9(
4)

46
0.

6(
8)

55
9.

0(
12

)
40

5.
7(

1)
40

7.
6(

2)
41

0.
7(

3)
51

7.
6(

10
)

64
5.

7(
13

)
45

8.
2(

7)
48

9.
7(

9)
52

2.
9(

11
)

O
rg

4
19

68
.0

(5
)

19
68

.6
(7

)
19

68
.6

(6
)

20
80

.8
(9

)
20

31
.3

(8
)

15
73

.7
(2

)
15

91
.7

(3
)

14
41

.5
(1

)
21

18
.1

(1
1)

19
38

.2
(4

)
21

45
.9

(1
2)

23
10

.1
(1

3)
20

81
.3

(1
0)

O
rg

5
31

89
.2

(9
)

31
20

.8
(7

)
31

73
.3

(8
)

26
16

.5
(6

)
33

19
.3

(1
0)

20
78

.0
(4

)
17

02
.7

(1
)

24
60

.9
(5

)
39

55
.1

(1
3)

36
67

.9
(1

1)
17

90
.5

(3
)

17
51

.6
(2

)
37

08
.1

(1
2)

O
rg

6
16

29
.3

(7
)

16
42

.3
(9

)
16

41
.4

(8
)

14
78

.4
(5

)
16

83
.7

(1
0)

11
21

.7
(1

)
12

29
.2

(2
)

16
00

.2
(6

)
20

32
.2

(1
2)

17
28

.7
(1

1)
13

30
.1

(3
)

14
64

.0
(4

)
23

58
.8

(1
3)

O
rg

7
44

54
.8

(1
1)

44
36

.6
(9

)
44

52
.0

(1
0)

46
12

.1
(1

3)
45

60
.7

(1
2)

28
61

.1
(3

)
29

31
.3

(4
)

23
71

.7
(1

)
38

07
.7

(7
)

33
93

.8
(5

)
25

45
.6

(2
)

36
17

.0
(6

)
40

28
.6

(8
)

av
eR

an
k

6.
09
±

3.
51

6.
45
±

2.
34

6.
27
±

2.
53

7.
36
±

3.
11

8.
00
±

3.
19

2.
82
±

1.
94

3.
82
±

2.
79

4.
18
±

3.
40

9.
82
±

2.
40

10
.9

1±
3.

30
6.

09
±

3.
62

8.
55
±

3.
78

10
.6

4±
1.

80

(c
)

Po
in

t
pe

rf
or

m
an

ce
of

al
li

nv
es

tig
at

ed
m

et
ho

ds
in

te
rm

s
of

LS
D

.
D

at
a

Se
t

Sy
nB

-R
V

M
Sy

nB
-R

V
M

Sy
nB

-R
V

M
R

V
M

B
ts

tr
pR

V
M

A
T

L
M

B
ts

tr
pA

T
L

M
k

-N
N

SV
R

M
L

P
R

T
B

ag
gi

ng
+

R
T

B
ag

gi
ng

+
SV

R
Sp

M
n

1D
hi

st
2D

hi
st

(E
m

pR
V

M
)

(B
ag

gi
ng

+
R

V
M

)
(E

m
pA

T
L

M
)

(B
ag

gi
ng

+
A

T
L

M
)

M
ax

w
el

l
0.

68
46

(4
)

0.
68

20
(3

)
0.

68
14

(2
)

0.
81

25
(7

)
0.

84
16

(8
)

0.
77

11
(6

)
0.

92
91

(1
0)

0.
88

61
(9

)
1.

02
63

(1
2)

1.
87

73
(1

3)
0.

65
25

(1
)

0.
69

10
(5

)
1.

01
78

(1
1)

K
it

ch
en

ha
m

0.
64

62
(4

)
0.

64
39

(2
)

0.
64

34
(1

)
0.

64
60

(3
)

1.
35

59
(1

3)
0.

66
02

(6
)

0.
65

00
(5

)
0.

73
68

(8
)

1.
03

94
(1

2)
1.

02
11

(1
0)

0.
75

80
(9

)
0.

70
81

(7
)

1.
03

51
(1

1)
C

oc
om

o8
1

1.
61

87
(7

)
1.

62
06

(8
)

1.
62

07
(9

)
1.

94
50

(1
1)

1.
80

43
(1

0)
0.

54
73

(2
)

0.
54

56
(1

)
2.

03
54

(1
2)

1.
57

20
(6

)
2.

14
04

(1
3)

1.
22

96
(4

)
1.

00
69

(3
)

1.
45

70
(5

)
N

as
a9

3
0.

86
33

(4
)

0.
86

74
(6

)
0.

86
66

(5
)

1.
10

90
(1

1)
0.

92
91

(7
)

0.
71

53
(2

)
0.

69
28

(1
)

1.
45

06
(1

2)
0.

96
24

(9
)

2.
17

80
(1

3)
0.

93
13

(8
)

0.
83

37
(3

)
0.

97
79

(1
0)

O
rg

1
0.

91
28

(6
)

0.
89

56
(4

)
0.

88
89

(3
)

1.
00

30
(9

)
0.

95
23

(8
)

0.
87

48
(2

)
0.

86
78

(1
)

1.
03

12
(1

0)
1.

23
70

(1
2)

1.
50

76
(1

3)
0.

91
16

(5
)

0.
94

52
(7

)
1.

22
64

(1
1)

O
rg

2
0.

76
50

(6
)

0.
76

58
(7

)
0.

76
85

(8
)

0.
77

76
(9

)
0.

81
06

(1
0)

0.
67

83
(3

)
0.

67
04

(2
)

0.
69

49
(5

)
0.

87
65

(1
2)

0.
87

81
(1

3)
0.

68
42

(4
)

0.
66

12
(1

)
0.

86
33

(1
1)

O
rg

3
0.

73
99

(2
)

0.
74

35
(3

)
0.

74
55

(4
)

0.
73

90
(1

)
2.

12
72

(1
3)

0.
76

25
(6

)
0.

75
86

(5
)

0.
82

37
(9

)
1.

03
30

(1
0)

1.
23

11
(1

2)
0.

77
73

(7
)

0.
77

81
(8

)
1.

03
58

(1
1)

O
rg

4
0.

88
58

(7
)

0.
88

36
(5

)
0.

88
42

(6
)

0.
92

03
(1

0)
0.

89
36

(8
)

0.
84

22
(1

)
0.

84
68

(2
)

0.
91

59
(9

)
1.

07
79

(1
3)

1.
06

10
(1

1)
0.

87
12

(4
)

0.
85

17
(3

)
1.

07
68

(1
2)

O
rg

5
0.

98
04

(8
)

0.
95

74
(7

)
0.

94
30

(5
)

1.
09

31
(1

0)
1.

07
72

(9
)

0.
81

94
(3

)
0.

85
65

(4
)

0.
95

44
(6

)
1.

12
88

(1
1)

1.
71

35
(1

3)
0.

79
24

(1
)

0.
81

73
(2

)
1.

22
79

(1
2)

O
rg

6
0.

95
10

(8
)

0.
92

30
(7

)
0.

90
58

(6
)

0.
98

86
(9

)
1.

00
39

(1
0)

0.
81

78
(2

)
0.

79
94

(1
)

0.
83

97
(3

)
1.

24
71

(1
2)

1.
20

20
(1

1)
0.

84
64

(4
)

0.
84

91
(5

)
1.

29
67

(1
3)

O
rg

7
0.

95
39

(4
)

0.
95

13
(3

)
0.

95
12

(2
)

0.
94

87
(1

)
1.

11
48

(1
1)

1.
02

20
(9

)
0.

98
41

(6
)

0.
96

99
(5

)
1.

06
37

(1
0)

1.
14

37
(1

3)
0.

98
57

(7
)

0.
99

72
(8

)
1.

12
80

(1
2)

av
eR

an
k

5.
45
±

1.
97

5.
00
±

2.
10

4.
64
±

2.
54

7.
36
±

3.
85

9.
73
±

2.
00

3.
82
±

2.
52

3.
45
±

2.
88

8.
00
±

2.
93

10
.8

2±
1.

99
12

.2
7±

1.
10

4.
91
±

2.
63

4.
73
±

2.
49

10
.8

2±
2.

09

(d
)

P
oi

nt
p

er
fo

rm
an

ce
of

al
l

in
ve

st
ig

at
ed

m
et

ho
ds

in
te

rm
s

of
SA

.

D
at

a
Se

t
Sy

nB
-R

V
M

Sy
nB

-R
V

M
Sy

nB
-R

V
M

R
V

M
B

ts
tr

pR
V

M
A

T
L

M
B

ts
tr

pA
T

L
M

k
-N

N
SV

R
M

L
P

R
T

B
ag

gi
ng

+
R

T
B

ag
gi

ng
+

SV
R

Sp
M

n
1D

hi
st

2D
hi

st
(E

m
pR

V
M

)
(B

ag
gi

ng
+

R
V

M
)

(E
m

pA
T

L
M

)
(B

ag
gi

ng
+

A
T

L
M

)
M

ax
w

el
l

0.
54

58
(2

)
0.

54
57

(3
)

0.
54

75
(1

)
0.

51
64

(6
)

0.
53

40
(4

)
0.

52
89

(5
)

0.
03

82
(1

3)
0.

50
02

(8
)

0.
38

16
(1

1)
0.

26
26

(1
2)

0.
51

53
(7

)
0.

49
53

(9
)

0.
39

09
(1

0)
K

it
ch

en
ha

m
0.

55
00

(4
)

0.
55

26
(3

)
0.

55
40

(2
)

0.
54

35
(5

)
0.

38
34

(1
2)

0.
57

50
(1

)
0.

53
27

(6
)

0.
52

59
(7

)
0.

40
90

(1
0)

0.
35

72
(1

3)
0.

47
27

(9
)

0.
49

66
(8

)
0.

40
22

(1
1)

C
oc

om
o8

1
0.

49
54

(3
)

0.
49

49
(4

)
0.

49
48

(5
)

0.
48

33
(8

)
0.

48
31

(9
)

0.
76

92
(1

)
0.

74
73

(2
)

0.
45

90
(1

2)
0.

48
41

(7
)

0.
32

08
(1

3)
0.

46
50

(1
1)

0.
48

54
(6

)
0.

48
14

(1
0)

N
as

a9
3

0.
59

40
(3

)
0.

59
24

(5
)

0.
59

29
(4

)
0.

57
78

(6
)

0.
60

19
(2

)
0.

67
68

(1
)

0.
46

44
(1

2)
0.

47
84

(1
1)

0.
56

10
(7

)
0.

27
89

(1
3)

0.
50

68
(1

0)
0.

55
02

(9
)

0.
55

04
(8

)
O

rg
1

0.
50

04
(7

)
0.

50
51

(6
)

0.
52

41
(4

)
0.

53
98

(3
)

0.
50

76
(5

)
0.

57
51

(1
)

0.
56

72
(2

)
0.

49
99

(8
)

0.
46

53
(1

0)
0.

42
38

(1
3)

0.
45

79
(1

2)
0.

47
97

(9
)

0.
46

26
(1

1)
O

rg
2

0.
41

56
(1

)
0.

41
49

(2
)

0.
41

23
(3

)
0.

39
93

(6
)

0.
40

20
(5

)
0.

40
31

(4
)

0.
39

51
(7

)
0.

38
20

(8
)

0.
36

25
(9

)
0.

26
07

(1
3)

0.
30

24
(1

2)
0.

30
78

(1
1)

0.
35

70
(1

0)
O

rg
3

0.
54

13
(7

)
0.

52
87

(8
)

0.
52

19
(9

)
0.

55
14

(5
)

-1
.2

07
2(

13
)

0.
57

52
(1

)
0.

57
22

(2
)

0.
55

63
(3

)
0.

46
08

(1
0)

0.
30

84
(1

2)
0.

55
38

(4
)

0.
54

83
(6

)
0.

45
71

(1
1)

O
rg

4
0.

42
95

(4
)

0.
43

30
(2

)
0.

43
43

(1
)

0.
43

01
(3

)
0.

41
65

(5
)

0.
41

03
(7

)
0.

39
47

(8
)

0.
41

32
(6

)
0.

36
40

(1
0)

0.
27

90
(1

3)
0.

32
00

(1
2)

0.
33

54
(1

1)
0.

36
61

(9
)

O
rg

5
0.

42
07

(7
)

0.
44

56
(5

)
0.

45
29

(4
)

0.
35

62
(8

)
0.

32
64

(9
)

0.
50

21
(3

)
-0

.1
15

3(
13

)
0.

43
03

(6
)

0.
32

45
(1

0)
0.

20
49

(1
2)

0.
50

27
(2

)
0.

50
58

(1
)

0.
29

23
(1

1)
O

rg
6

0.
46

62
(7

)
0.

48
06

(4
)

0.
47

98
(5

)
0.

47
36

(6
)

0.
42

79
(8

)
0.

08
90

(1
2)

-0
.1

06
2(

13
)

0.
51

14
(3

)
0.

32
70

(9
)

0.
32

07
(1

0)
0.

51
81

(1
)

0.
51

37
(2

)
0.

29
59

(1
1)

O
rg

7
0.

23
70

(7
)

0.
23

80
(6

)
0.

23
53

(8
)

0.
22

33
(1

0)
0.

10
30

(1
3)

0.
30

43
(2

)
0.

25
82

(4
)

0.
36

36
(1

)
0.

24
71

(5
)

0.
18

07
(1

2)
0.

28
98

(3
)

0.
23

05
(9

)
0.

18
90

(1
1)

av
eR

an
k

4.
73
±

2.
33

4.
36
±

1.
86

4.
18
±

2.
56

6.
00
±

2.
10

7.
73
±

3.
82

3.
45
±

3.
47

7.
45
±

4.
66

6.
64
±

3.
35

8.
91
±

1.
81

12
.3

6±
0.

92
7.

55
±

4.
32

7.
36
±

3.
32

10
.2

7±
1.

01

97

with a method is its rank over all methods on each data set (r(i)
j), and the last row lists the

average rank of each method across all data sets (Rj). We can see that the three versions

of SynB-RVM can usually outperform the other RVM-related methods. Specifically, when

measured in MAE, SynB-RVM 2Dhist achieves the best average rank, SynB-RVM 1Dhist

performs the second followed by SynB-RVM SpMn with slightly worse average rank, and

BtstrpRVM (and Bagging+RVM) performs the worst among all RVM-related methods.

ATLM (and EmpATLM) can always have slightly better average rank than SynB-RVM,

and the performance of BtstrpATLM (and Bagging+ATLM) shifts according to the per-

formance metrics. Nevertheless, SynB-RVM usually significantly outperforms other SEE

methods in terms of at least one performance metric.

Next, we conduct post-hoc tests for a more formal comparison. SynB-RVM 2Dhist is

chosen as the control method for often performing the best among the three versions. For

each data set, we compute the effect size across the 30 runs against SynB-RVM 2Dhist and

highlight the difference in medium/large magnitude. Vargha and Delaney’s A12 is adopted

for being a non-parametric effect size and making no assumptions on the underlying

distribution [183, 12]. According to Vargha and Delaney’s categories [183], it is interpreted

as small (>0.56), medium (>0.64), and large (> 0.71). The results are as follows:

• In terms of MAE, post-hoc tests with Holm-Bonferroni corrections for comparing each

method against SynB-RVM 2Dhist detect significant superiority to SVR, MLP, RT and

Bagging+SVR. No significant difference can be found with respect to the three versions of

SynB-RVM or to the RVM/ATLM-related methods. SynB-RVM 2Dhist has superiority

to RVM (EmpRVM), BtstrpRVM (Bagging+RVM) and BtstrpATLM (Bagging+ATLM)

in most data sets with medium/large effect size, but performs worse than ATLM (Em-

pATLM) in many data sets with medium/large effect size.

• In terms of MdAE, post-hoc tests detect that SynB-RVM 2Dhist performs significantly

better than RVM (EmpRVM), BstrpRVM (Bagging+RVM), SVR, MLP, Bagging+RT

98

and Bagging+SVR. No significant difference can be found among the three versions of

SynB-RVM. RT and k-NN have better average ranks in terms of MdAE than in terms

of MAE, and perform similarly to SynB-RVM 2Dhist. ATLM (EmpATLM) and Btstr-

pATLM (Bagging+ATLM) have similar overall performance, but outperform our method

in many data sets with medium/large effect size.

• In terms of LSD, post-hoc tests detect that SynB-RVM 2Dhist performs significantly

better than BtstrpRVM (Bagging+RVM), k-NN, SVR, MLP and Bagging+SVR. No sig-

nificant difference can be found among the three versions of SynB-RVM. ATLM (Em-

pATLM) and BtstrpATLM (Bagging+ATLM) have similar overall performance, and are

superior or inferior to SynB-RVM 2Dhist with medium/large effect size depending on the

data sets.

• In terms of SA, post-hoc tests detect that SynB-RVM 2Dhist performs significantly

better than BtstrpRVM (Bagging+RVM), SVR, MLP, and Bagging+SVR. No signifi-

cant difference is found among the three versions of SynB-RVM. Similar to MAE, SynB-

RVM 2Dhist outperforms RVM (EmpRVM), BtstrpRVM (Bagging+RVM), and Btstr-

pATLM (Bagging+ATLM) in most data sets with medium/large effect size, but performs

worse than ATLM (EmpATLM) in many data sets with medium/large effect size.

• Overall, the performance comparison slightly varies in terms of the metric, consistent

with the observations in [135]. ATLM (EmpATLM) can outperform SynB-RVM with

medium/large effect size in many data sets, but their performance is statistically similar

across data sets. Nevertheless, our method is more consistently among the best methods

regardless of the metrics.

Moreover, we discuss the magnitude of performance difference in terms of SA for

its interpretability. We can see from table 5.2(d) that the magnitude of performance

difference varies depending on the data sets and the competing methods. In the data sets

where SynB-RVM performs worse with medium/large effect size, the magnitude is usually

99

of little practical significance except for EmpATLM and BtstrpATLM on Cocomo81,

where SynB-RVM performs worse than EmpATLM/BtstrpATLM with 0.49 vs 0.76/0.74.

In the data sets where SynB-RVM performs better with medium/large effect size, the

magnitude can be very large in Maxwell against BtstrpATLM with 0.54 vs 0.038, in Org3

against BtstrpRVM with 0.52 vs -1.207, in Org5 against BtstrpATLM with 0.45 vs -0.113,

and in Org6 against EmpATLM with 0.47 vs 0.089 and against BtstrpATLM with 0.47

vs -0.106. The performance improvement of SynB-RVM over RVM is usually small, but

it can achieve better relative width as will be discussed in section 5.4.2. Overall, these

results suggest that SynB-RVM is more likely to perform better and sometimes much

better in practice.

We should note one limitation of ATLM, as discussed in sections A.1.3 and 5.3.3,

ATLM-related methods may suffer numerical problems when giving effort estimation for

the testing example that is very distant form any of the training examples. We circumvent

it by setting up a reasonable threshold, surpassing which the predicted effort will not

take part in the final prediction calculation (for BtstrpATML and Bagging+ATLM) and

performance evaluation (for ATLM and EmpATLM).

An interesting observation is that ATLM-related methods can largely outperform all

the others in some data sets such as Cocomo81, Nasa93 and Org5. It suggests fairly good

multiple linear fittings between the transformed input features and the transformed efforts.

The variable transformation includes logarithm, square-root and none [188]. Pearson

correlations between the logarithm of (e.g.) line of codes and logarithm of effort attain

fairly large values at 0.8466, 0.8435, and 0.8236 for these data sets respectively, suggesting

good linearity between inputs and outputs. These results also confirm the arguments from

the paper [99] saying that “with appropriate transformations, multiple linear regression

can produce suitable and accurate predictive models”.

Overall, experimental results show that SynB-RVM significantly outperforms RVM

100

(EmpRVM) and BtstrpRVM (Bagging+RVM), and performs similar to ATLM (Em-

pATLM) and BtstrpATLM (Bagging+ATLM). Nevertheless, SynB-RVM holds its merits

over ATLM on its capability of making uncertain prediction and absence of numerical

problems. It also confirms the results of Whigham et al.’s [188] stating that ATLM is

competitive to state-of-the-art SEE methods.

5.4.2 Evaluation of Uncertain Estimation

This subsection aims to answer RQ3.2 outlined in section 5.1: Can SynB-RVM’s PIs

achieve adequate hit rate with narrower and more informative PIs? Evaluation of uncer-

tain prediction should be based on the best parameter settings with respective to some

performance metric such as hit rate, relative width, MAE, MdAE, LSD, or SA. In this

chapter, the best parameter settings are decided in accordance with the best MAE.

Evaluation on Hit Rate

To evaluate the derived PIs in terms of hit rate, we produce PIs with twelve CLs as

{10, 20, · · · , 90, 68.27, 95.45, 99.73}% according to equations (5.4) and (5.5). In this set-

tings, CLs {68.27, 95.45, 99.73}% are included due to their easy computation.

In practice, a hit rate that is either equivalent to or greater than their CL is considered

to be satisfactory. When a hit rate is smaller than its CL, the method fails in achieving

the required hit rate. In this case, the smaller the hit rate the worse the uncertain

performance. When a hit rate is equivalent or greater than its CL, the method succeeds

in reaching the required hit rate. In formula, the loss function of hit rate is defined as

L (h) =


cl − h, cl > h

0, cl 6 h
(5.9)

where h is the actual hit rate and cl is the corresponding CL. When the hit rate equals

to or surpasses its CL, the loss is zero; when the hit rate is lower than its CL, the loss

101

equals to their distance.

For an idea of the achievable hit rate of uncertain methods, table 5.3(a) lists the median

hit rate across 11 data sets for each method at each CL. The values in parentheses are the

percentages (in 100%) of data sets that succeed in reaching the desired hit rate. We can see

that our method can usually succeed in reaching the required hit rate, while most others

fail in reaching them. In particular, BtstrpRVM/BtstrpATLM always has much lower

hit rate than required. Though having better hit rate than BtstrpRVM/BtstrpATLM,

EmpRVM/EmpATLM still rarely succeeds in reaching the CLs, i.e., the percentage of

success is almost always zero. The magnitude of superiority of SynB-RVM in terms of hit

rate is usually large compared to all the methods except for RVM. Taking CL80% as an

example, SynB-RVM 1Dhist can achieve 81.6% hit rate that is superior to the best 70.3%

achieved by EmpATLM. The difference between SynB-RVM and RVM in terms of hit rate

is usually small, but SynB-RVM usually surpasses the CLs. This means that adjusting

the method to reduce its hit rate could potentially help improving the width of the PIs

produced by this method. A possible enhancement would be to provide a non-symmetric

PIs as will be discussed in the last subsection of section 5.7.2.

Table 5.3(b) lists the average rank of each method across all data sets in terms of hit

rate. To perform a thorough comparison, for each of the 12 CLs, we conduct one Friedman

test with the significance level 0.05 on the hit rate values. The null hypothesis (H0) states

that the hit rate values are equivalent across data sets. The alternative hypothesis (H1)

states that at least one pair of methods differs in terms of hit rate. All the 12 Friedman

tests reject H0 with very small p-values ranging from 4.0301 × 10−14 to 1.1826 × 10−4.

After that, we conduct post-hoc tests with Holm-Bonferroni corrections for each CL.

Positive/negative signs in the parentheses denote significant difference/none-difference

against the control methods that have ? in their parentheses. The control methods may

vary for different CLs and are chosen for having the best average ranks. For instance,

102

Table 5.3: Evaluation of uncertain SEE methods in terms of hit rate measured in Eq. (5.9).
(a) Median hit rate across 11 data sets for each method at each CL. The values in the parentheses are the
percentages (in 100%) of data sets that succeed in hit rate. Cells in yellow (light grey) highlight methods
whose median values succeed in reaching or surpassing the corresponding hit rate.

CL% RVM BtstrpRVM EmpRVM BtstrpATLM EmpATLM # SpMn # 1Dhist # 2Dhist
10.00 16.6(72.7) 4.4(0.0) 7.7(0.0) 2.5(0.0) 8.4(0.0) 12.5(81.8) 12.4(81.8) 12.5(81.8)
20.00 36.9(63.6) 9.1(0.0) 16.1(9.1) 5.7(0.0) 16.9(9.1) 24.8(72.7) 24.8(72.7) 24.7(81.8)
30.00 50.7(63.6) 14.7(0.0) 24.9(0.0) 8.8(0.0) 26.2(0.0) 39.5(63.6) 39.2(63.6) 39.2(63.6)
40.00 56.6(63.6) 19.8(0.0) 32.8(0.0) 14.4(0.0) 34.8(0.0) 50.5(63.6) 51.7(63.6) 51.6(63.6)
50.00 61.9(72.7) 24.6(0.0) 43.2(0.0) 18.8(0.0) 44.9(0.0) 57.0(54.5) 59.5(54.5) 62.5(54.5)
60.00 66.8(63.6) 29.8(0.0) 53.8(0.0) 23.2(0.0) 52.5(0.0) 67.0(54.5) 68.8(54.5) 74.8(54.5)
68.27 75.4(72.7) 31.9(0.0) 59.5(0.0) 25.0(0.0) 61.4(0.0) 77.1(63.6) 75.1(63.6) 78.6(63.6)
70.00 76.4(72.7) 33.8(0.0) 59.5(0.0) 26.6(0.0) 61.9(0.0) 78.3(63.6) 77.6(63.6) 79.8(63.6)
80.00 81.0(63.6) 40.5(0.0) 69.7(0.0) 31.6(0.0) 70.3(0.0) 81.3(63.6) 81.6(63.6) 82.2(63.6)
90.00 85.9(36.4) 50.9(0.0) 79.5(0.0) 41.1(0.0) 83.8(0.0) 86.3(27.3) 86.0(27.3) 85.9(27.3)
95.45 89.0(9.1) 53.0(0.0) 86.2(0.0) 45.4(0.0) 89.0(0.0) 88.7(9.1) 88.7(18.2) 88.8(18.2)
99.73 94.9(0.0) 61.7(0.0) 88.4(0.0) 49.1(0.0) 91.2(0.0) 93.5(0.0) 94.3(0.0) 93.4(0.0)

(b) Average ranks and statistical tests of uncertain SEE methods across 11 data sets with respect to hit
rate at each CL. Positive/negative signs in the parentheses denote significant difference/none-difference
against the control method by Friedman test with the significance level 0.05. The control methods for
CLs have ? in their parentheses. Given significant difference, medium/large effect size against the control
method across all data sets is highlighted in orange (dark grey)/yellow (light grey).

CL% RVM BtstrpRVM EmpRVM BtstrpATLM EmpATLM # SpMn # 1Dhist # 2Dhist
10.0 2.73 (−) 6.91 (+) 5.95 (+) 6.91 (+) 5.32 (+) 2.73 (−) 2.45 (?) 3.00 (−)
20.0 2.77 (−) 6.95 (+) 5.86 (+) 7.09 (+) 5.18 (+) 2.68 (−) 2.86 (−) 2.59 (?)
30.0 2.77 (−) 6.91 (+) 5.82 (+) 7.00 (+) 4.64 (−) 2.68 (?) 3.23 (−) 2.95 (−)
40.0 2.68 (?) 6.82 (+) 5.82 (+) 6.91 (+) 5.18 (+) 2.82 (−) 2.95 (−) 2.82 (−)
50.0 2.55 (?) 6.91 (+) 6.00 (+) 6.82 (+) 5.00 (+) 2.82 (−) 3.09 (−) 2.82 (−)
60.0 2.45 (?) 7.00 (+) 5.91 (+) 6.82 (+) 4.82 (+) 3.23 (−) 2.91 (−) 2.86 (−)
68.3 2.59 (?) 6.91 (+) 6.09 (+) 6.55 (+) 4.73 (−) 2.95 (−) 3.32 (−) 2.86 (−)
70.0 2.68 (?) 6.91 (+) 6.09 (+) 6.45 (+) 4.73 (−) 2.95 (−) 3.14 (−) 3.05 (−)
80.0 2.59 (?) 6.73 (+) 5.91 (+) 6.64 (+) 4.45 (−) 3.05 (−) 3.50 (−) 3.14 (−)
90.0 2.77 (?) 6.36 (+) 5.45 (+) 6.73 (+) 3.73 (−) 3.82 (−) 3.59 (−) 3.55 (−)
95.5 3.05 (?) 6.82 (+) 5.18 (−) 6.45 (+) 3.45 (−) 3.95 (−) 3.59 (−) 3.50 (−)
99.7 3.64 (−) 6.91 (+) 4.45 (−) 6.36 (+) 2.73 (?) 4.09 (−) 3.82 (−) 4.00 (−)

SynB-RVM 1Dhist has the best average rank for CL10% and is chosen as the control

method; RVM has the best average rank for CL50% and is chosen as the control method.

We can see from table 5.3(b) that no significant difference has been found between the

control methods and RVM and the three versions of SynB-RVM based on the post-hoc

tests with Holm-Bonferroni corrections with the significance level 0.05 (see the negative

signs associated to them). Actually, the control methods are either RVM or SynB-RVM

over all CLs except for CL99.70% (see the star signs). All PIs derived from BtstrpRVM

103

perform significantly worse than the ones from the control methods. One possible reason

for their worse performance than RVM may be the invertibility problem when training

RVM with replicated training examples. SynB-RVM overcomes this problem by replacing

the replicated training examples with their synthetic counterparts as in algorithm 3. Sim-

ilarly, post-hoc tests have found significantly worse performance for EmpRVM compared

to the control methods in most hit rate. For ATLM-related methods, all PIs derived

from BtstrpATLM are significantly worse than the ones from the control methods. The

PIs derived from EmpATLM with CLs that are equivalent or lower than 60% perform

significantly worse than the ones from the control methods; post-hoc tests cannot detect

significant difference for the CLs greater than 60%, but table 5.3(a) shows large superiority

of SynB-RVM to EmpATLM for the CLs until 90%.

Though higher CL is more appealing to industry, Jørgensen et al. [84] suggested “not

to ask for high confidence (90 percent, or worse, 98 percent) effort prediction intervals”

because “lower confidence intervals are much likely to be realistic”. This is because lower

CLs are more likely to be achieved in practice and thus provide more precise and useful

information to the project managers. Several studies in industry and academia had also

showed strong bias towards overconfidence for effort PIs [84, 91, 104], where higher CLs

are not really reachable in practice. Even when we can reach higher hit rate, the width

of the PI is usually too wide to be informative [84, 9, 170]. Therefore, we opt to use PIs

with lower CLs such as 80% or even 60%, allowing only one/two projects to exceed the

upper bound and only one/two to fall below the lower bound on average.

In summary, the experimental results and statistical tests show that SynB-RVM can

usually achieve significantly better hit rate than other uncertain methods except for RVM,

where they perform similarly. The performance superiority is always very large in practice

especially for CLs below 90% that are more pragmatic.

104

Evaluation on Relative Width

We evaluate relative width based on the PIs generated previously. Larger hit rate may

be associated to wider PIs, whereas smaller hit rate may be associated to narrower PIs.

Therefore, if two methods have different hit rate, their relative widths are not comparable.

Conversely, if two methods have the same hit rate, the one providing the narrower relative

width is considered to be more informative. One question is what hit rate should be

selected for the comparison. Hit rate equivalent to or greater than the CL is satisfactory.

However, most methods were unable to reach their CLs. In the end, we fixed the hit rate

to the values that are similar to the largest hit rate achievable by all methods.

We set up the following evaluation procedures to find the similar hit rate (table 5.4) and

their corresponding relative widths (table 5.5): (1) For each data set, find the minimum

of the highest hit rate across all methods and set this value as the benchmark hit rate

denoted as B HitR. The benchmark hit rate of each data set is chosen to be the highest

hit rate that can be achievable by all uncertain methods. In other words, given the

set composed by the highest hit rate achieved by uncertain methods for a data set, the

benchmark hit rate is the lowest hit rate in this set. The benchmark hit rate values are

reported in the second column of table 5.4, each corresponding to one data set. (2) For

each method, find the closest hit rate to the benchmark values across all data sets and

form the main body of table 5.4. Friedman test with the significance level 0.05 does not

find significant difference on these hit rate values with the p-value 0.8763, indicating the

similarity of these values as desired for a fair comparison of their widths. (3) Find the

relative widths in line with these hit rat values and produce table 5.5. In this way, we

can compare the relative widths with similar hit rate. Smaller values represent better

exploitation of uncertainty and more informative PIs. Friedman test with the significance

level 0.05 rejects null hypothesis (H0) with the p-value 2.28 × 10−4, indicating that at

least one pair of the methods differs.

105

Next, we conduct post-hoc tests for a more thorough comparison. We can see from

table 5.5 that the three versions of our method can usually produce much narrower PIs

compared with RVM and BtstrpRVM while reaching similar hit rate. SynB-RVM 1Dhist

has the best average rank, and thus is chosen as the control method. Post-hoc tests with

Holm-Bonferroni corrections have found significant difference over RVM and BtstrpRVM.

No significant difference has been found over EmpRVM, BtstrpATLM or EmpATLM. Nev-

ertheless, SynB-RVM 1Dhist has large magnitude of superiority to these methods with

medium/large effect size in terms of relative width in most data sets. SynB-RVM 1Dhist

performs similarly to SynB-RVM 2Dhist, but is superior to SynB-RVM SpMn with medi-

um/large effect size in many data sets.

In practice, SynB-RVM 1Dhist can outperform other RVM-based methods with large

magnitude. For instance, SynB-RVM 1Dhist has much narrower PIs in Maxwell at 1.1964

against RVM at 5.3690 and against BtstrpRVM at 3.5965, in Cocomo81 at 1.7579 against

RVM at 7.8990, against BtstrpRVM at 4.0331 and against EmpRVM at 5.9306, in Nasa93

at 2.4906 against RVM at 24.7529 and against BtstrpRVM at 8.3049. When it performs

worse than some uncertain methods with medium/large effect size, the magnitude of

performance inferiority is small. For ATLM-based uncertain methods, the magnitude of

performance difference becomes smaller. Nevertheless, SynB-RVM still holds superiority

for having better relative widths with medium/large effect size in more data sets.

Evaluation of Relative Width with Higher CLs. We compare SynB-RVM 1Dhist

against EmpRVM following the same evaluation procedures in terms of relative width.

SynB-RVM 1Dhist (EmpRVM) is chosen for having the best average rank among the

three versions of SynB-RVM (the competitors) according to table 5.5. In this manner, we

can reach higher benchmark hit rate, and thus the relative widths in line with higher hit

rate can be evaluated. The first part of table 5.6 lists the benchmark hit rate values and

the chosen hit rate. Wilcoxon sign-rank test with the significance level 0.05 does not find

106

Table 5.4: Similar hit rate of uncertain SEE methods. B HitR denotes the benchmark hit
rate being the minimum of the highest hit rate across all methods. The chosen hit rate may
correspond to different CLs. The reported values are the mean of 30 runs of 10-fold CV.

Data Set B HitR RVM BtstrpRVM EmpRVM BtstrpATLM EmpATLM # SpMn # 1Dhist # 2Dhist
Maxwell 0.7161 0.7538 0.7161 0.7177 0.6694 0.7099 0.7134 0.7161 0.7113

Kitchenham 0.3306 0.3687 0.2791 0.2874 0.3306 0.2917 0.2693 0.2630 0.2562
Cocomo81 0.6587 0.6587 0.6545 0.7228 0.6201 0.6201 0.6556 0.6524 0.6556

Nasa93 0.8032 0.7971 0.7921 0.8122 0.8416 0.8043 0.8036 0.8032 0.8036
Org1 0.4912 0.4890 0.4474 0.4592 0.4912 0.4759 0.5689 0.4105 0.4114
Org2 0.5010 0.5396 0.5094 0.4844 0.5010 0.5062 0.5333 0.5271 0.5292
Org3 0.3358 0.2957 0.3331 0.2963 0.3358 0.3805 0.5286 0.5185 0.5278
Org4 0.2858 0.2183 0.2945 0.2596 0.2858 0.2915 0.2470 0.2484 0.2481
Org5 0.6175 0.6175 0.6175 0.5794 0.6095 0.5730 0.6254 0.6286 0.6349
Org6 0.4758 0.3576 0.4455 0.4318 0.4758 0.4530 0.5515 0.5045 0.4530
Org7 0.3349 0.3190 0.3349 0.3651 0.3270 0.3397 0.3460 0.3508 0.3492

Table 5.5: Relative width of similar hit rate of uncertain SEE methods. The reported values
are the mean of 30 runs of 10-fold CV. The last row lists the average ranks in terms of better
relative width, where significant difference of Friedman tests across all data sets is highlighted
in yellow (light grey). Effect size across 30 runs of each data set against the control method is
computed. SynB-RVM 1Dhist is chosen as the control method for having the best average rank
among the three versions of SynB-RVM. Cells in green (light grey)/orange (dark grey) indicate
significantly better/worse in the control method with medium/large effect size.

Data Set RVM BtstrpRVM EmpRVM BtstrpATLM EmpATLM # SpMn # 1Dhist # 2Dhist
Maxwell 5.3690(8) 3.5965(7) 1.3463(5) 1.1753(1) 1.5491(6) 1.2105(4) 1.1964(3) 1.1920(2)

Kitchenham 0.5440(6) 0.6119(8) 0.3736(4) 0.5602(7) 0.4309(5) 0.2880(3) 0.2782(2) 0.2758(1)
Cocomo81 7.8990(8) 4.0331(6) 5.9306(7) 0.8547(1) 0.8838(2) 1.7850(5) 1.7579(4) 1.7434(3)

Nasa93 24.7529(8) 8.3049(7) 2.6709(6) 2.4244(2) 1.4536(1) 2.5382(5) 2.4906(4) 2.4635(3)
Org1 1.2073(8) 1.0177(7) 0.7698(4) 0.9296(6) 0.7343(3) 0.8693(5) 0.5790(1) 0.5807(2)
Org2 0.7568(5) 0.8353(6) 0.7420(4) 1.0378(8) 0.8598(7) 0.6395(1) 0.6397(2) 0.6451(3)
Org3 0.5582(2) 1.1071(8) 0.4536(1) 0.6992(3) 0.7540(4) 0.8216(5) 0.8444(6) 0.9103(7)
Org4 0.5955(5) 0.7351(8) 0.5452(4) 0.6661(7) 0.6005(6) 0.4627(1) 0.4630(2) 0.4635(3)
Org5 1.5556(7) 6.3404(8) 1.1957(5) 1.1817(4) 0.8633(1) 1.2568(6) 1.1067(2) 1.1165(3)
Org6 0.8125(1) 1.6334(7) 0.8477(2) 2.5781(8) 1.2453(5) 0.9132(3) 1.5098(6) 1.2052(4)
Org7 0.9659(4) 2.4802(8) 0.7741(1) 1.1289(7) 0.9961(5) 0.8943(2) 0.9441(3) 1.0276(6)

aveRank 5.64 ± 2.38 7.27 ± 0.75 3.91 ± 1.83 4.91 ± 2.64 4.09 ± 1.98 3.64 ± 1.67 3.18 ± 1.59 3.36 ± 1.67

significant difference on the hit rate with p-value 0.8984, indicating the similarity of these

values as desired for a fair comparison of their relative width.

The second part of table 5.6 lists the relative widths in line with the chosen hit rate.

Wilcoxon sign-rank test with the significance level 0.05 cannot reject the H0 with p-

value 0.3652. This means that in some datasets our approach is better, and in some

others EmpRVM is better. Nevertheless, SynB-RVM 1Dhist can achieve better relative

widths than EmpRVM with medium/large effect size in most data sets. The magnitude

of performance superiority is often very large.

107

Table 5.6: Relative width of similar hit rate of SynB-RVM ht1D and EmpRVM. The reported
values are the mean of 30 runs of 10-fold CV. Effect size across 30 runs of each data set against
SynB-RVM 1Dhist is computed. Cells in green (light grey)/orange (dark grey) indicate better/-
worse in the control method with medium/large effect size.

Data Set Hit rate Relative width
B HitR EmpRVM # 1Dhist EmpRVM # 1Dhist

Maxwell 0.7957 0.8446 0.7957 3.2417 1.6536
Kitchenham 0.9623 0.9623 0.9664 2.5938 4.1532
Cocomo81 0.7794 0.7794 0.7995 44.5693 2.7822

Nasa93 0.8032 0.8122 0.8032 2.6709 2.4906
Org1 0.9325 0.9408 0.9325 6.9109 4.2131
Org2 0.6542 0.6542 0.6333 1.0897 0.8198
Org3 0.9842 0.9842 0.9827 3.5895 8.3333
Org4 0.9347 0.9544 0.9347 5.9212 3.5339
Org5 0.8175 0.8175 0.8127 2.5726 1.8341
Org6 0.8682 0.8682 0.8576 1.7567 3.4535
Org7 0.8619 0.8619 0.8635 2.7669 2.3117

Table 5.7: Summary of performance comparison of SynB-RVM against other SEE methods.
The point prediction metrics include MAE, MdAE, LSD and SA, and the uncertain prediction
metrics include hit rate and relative width. Equality/positive/negative sign denotes insignifi-
cantly different/significantly better/significantly worse performance of SynB-RVM against other
methods. Non-existing comparison is denoted as N/A. Note that the comparison in hit rate is
an overall description across the 12 CLs.

PF Metric RVM Bagging+RVM BtstrpRVM EmpRVM ATLM Bagging+ATLM BtstrpATLM EmpATLM k-NN SVR MLP RT Bagging+RT Bagging+SVR
MAE = = = = = = = = = + + + = +
MdAE + + + + = = = = = + + = + +
LSD = + + = = = = = + + + = = +
SA = + + = = = = = = + + = = +

hitR = N/A + + N/A N/A + + N/A N/A N/A N/A N/A N/A
rWidth + N/A + = N/A N/A = = N/A N/A N/A N/A N/A N/A

Overall, SynB-RVM produces significantly better relative widths than those from RVM

and BtstrpRVM across data sets, and is superior to EmpRVM, EmpATLM and Btstr-

pATLM with medium/large effect size in most data sets. The superiority magnitude can

be very large over other RVM-related uncertain methods in practice.

5.4.3 Brief Summary

Table 5.7 summarizes the performance comparison in terms of point and uncertain pre-

diction, showing the superiority of SynB-RVM in terms of overall performance:

• In terms of point prediction, SynB-RVM significantly outperforms RVM (EmpRVM),

108

BtstrpRVM (Bagging+RVM), k-NN, SVR, MLP, RT, Bagging+RT, and Bagging+SVR

with respect to at least one performance metric; it performs similarly to ATLM (Em-

pATLM) and BtstrpATLM (Bagging+ATLM).

• In terms of hit rate, SynB-RVM usually achieves significantly better performance

than other SEE methods except for RVM. In terms of relative width, SynB-RVM usually

produces significantly better PIs with CLs than those from RVM and BtstrpRVM; it per-

forms similarly to EmpRVM, BtstrATLM, and EmpATLM. Nevertheless, SynB-RVM has

large magnitude of performance superiority to EmpRVM, BtstrATLM, and EmpATLM

with medium/large effect size in most data sets.

• Therefore, SynB-RVM is a robust winner and never performs significantly worse

than its competitors.

5.5 Investigation into SynB-RVM Components

This section aims to answer RQ3.3 outlined in section 5.1: If SynB-RVM can improve

the point and uncertain estimation of its baseline RVM, which components of SynB-RVM

contribute to the point and uncertain performance improvement? It can be further divided

into the following sub-questions:

• RQ3.3(a): Are the three methods for deriving the probabilistic prediction similar in

terms of final point and uncertain prediction?

• RQ3.3(b): Do the synthetic displacement and Bootstrap pruning of SynB-RVM

contribute towards improving the final point and uncertain prediction?

This section also investigates SynB-RVM vs. Bagging ensemble in section 5.5.3 and the

correlation between point and uncertain prediction in section 5.5.4. These studies provide

a more thorough understanding of SynB-RVM.

109

5.5.1 Three Methods that Derive Final Uncertain Prediction

To answer RQ3.3(a), we can apply statistical tests on SynB-RVM SpMn, SynB-RVM 1Dhist

and SynB-RVM 2Dhist to investigate the significance of their difference. This is possible

because the only difference between the three versions of SynB-RVM is the method for

deriving the final probabilistic predictions according to section 5.2.2.

For point prediction, Friedman test with the significance level 0.05 is used for com-

paring SynB-RVM SpMn, SynB-RVM 1Dhist, and SynB-RVM 2Dhist in table 5.2. The

null hypothesis (H0) states that they are equivalent. The alternative hypothesis (H1)

states that at least one pair of the three versions of the proposed SynB-RVM differs. No

significant difference is detected with the p-values 0.9204, 0.7145, 0.4617 and 0.9204 in

terms of MAE, MdAE, LSD, and SA respectively.

Next, we consider the difference of the three versions of SynB-RVM for uncertain

prediction. In term of hit rate, we conduct a Friedman test with the significance level 0.05

on the hit rate values of SynB-RVM SpMn, SynB-RVM 1Dhist and SynB-RVM 2Dhist

shown in table 5.3(b) for each of the 12 CLs. For each CL, the null hypothesis (H0) is

that the three versions of SynB-RVM are equivalent in terms of hit rate. The alternative

hypothesis (H1) states that at least one pair of the three versions of SynB-RVM differs.

No significant difference has been found for either of the 12 CLs with the p-values ranging

from 0.4617 to 0.9966. In terms of relative width, Friedman test with the significance

level 0.05 is applied to the relative widths of SynB-RVM SpMn, SynB-RVM 1Dhist and

SynB-RVM 2Dhist shown in table 5.5 that achieve similar hit rate. The null hypothesis

(H0) states that they are equivalent in terms of relative width. The alternative hypothesis

(H1) states that at least one pair of the methods differs. No significant difference has been

found with the p-value 0.9204.

Overall, the three versions of the proposed SynB-RVM perform similarly across data

sets in terms of both point and uncertain effort prediction.

110

5.5.2 Synthetic Displacement and Bootstrap Pruning

To answer RQ3.3(b), SynB-RVM 1Dhist is compared with its variants where synthetic dis-

placement and/or Bootstrap pruning are/is removed contributing to # rmAll, # rmSyn,

and # rmPru. It enables us to explore the effectiveness of the two components in improv-

ing the performance of its base model RVM. SynB-RVM 1Dhist is chosen among the three

versions for its best relative width and since they are shown to be statistically similar in

section 5.5.1. We follow the same validation design in section 5.3 to compare the three

variations against SynB-RVM 1Dhist and RVM.

Comparison of Point Estimation

Table 5.8 shows the point prediction performance of the five investigated methods across

data sets. We perform Friedman tests for the statistical comparison. The null hypothesis

(H0) states that all methods are equivalent in terms of point prediction performance. The

alternative hypothesis (H1) states that at least one pair of methods differs. Friedman tests

with the significance level 0.05 reject H0 in terms of all metrics except for MdAE where

H1 has to be taken. Next, we conduct post-hoc tests for a more formal comparison

between methods. Syn-RVM 1Dhist is the control method for having the best MAE,

and is compared with all the others. Post-hoc tests with Holm-Bonferroni corrections for

each method against Syn-RVM 1Dhist detect significant difference with respect to RVM,

rmAll and # rmSyn in term of MAE, LSD, and SA. No significant difference is detected

with respect to # rmPru.

Overall, analytical results verify the effectiveness of synthetic displacement and the

two components as a whole in improving point prediction performance of RVM. They also

suggest that synthetic displacement has more significant impact than Bootstrap pruning

for point prediction performance.

111

Table 5.8: Point prediction performance of RVM, SynB-RVM 1Dhist, and its three variants. The
reported values are the mean of 30 runs of 10-fold CV. The rank for a data set is in parentheses.
The last row lists the average rank, and significant difference of Friedman tests across all data
sets is highlighted in yellow (light grey).

(a) MAE. Significant difference with p-value 4.10 ∗ 10−6.
Data Set RVM # 1Dhist # rmAll # rmPru # rmSyn
Maxwell 4193.43(5)3965.25(1)3982.31(4)3965.25(2)3980.15(3)

Kitchenham1725.89(3)1674.57(1)1753.69(4)1674.83(2)1753.88(5)
Cocomo81 569.72(5) 553.92(1) 564.99(3) 553.98(2) 565.02(4)

Nasa93 355.52(5) 340.72(1) 341.83(3) 340.72(2) 342.91(4)
Org1 2868.65(1)3059.13(2)3069.56(5)3059.86(3)3061.54(4)
Org2 1728.16(5)1689.17(2)1727.95(4)1689.17(1)1724.15(3)
Org3 1005.73(1)1051.88(3)1143.41(4)1051.88(2)1147.44(5)
Org4 3689.02(3)3662.91(2)3742.61(4)3662.91(1)3747.12(5)
Org5 5862.69(5)5252.19(1)5743.85(4)5315.49(2)5721.11(3)
Org6 2741.10(5)2697.05(2)2628.74(1)2697.05(3)2725.18(4)
Org7 4897.38(5)4829.49(1)4872.56(3)4829.49(2)4896.32(4)

aveRank 3.91 1.55 3.55 2.00 4.00

(b) MdAE. No significant difference with p-value 0.132.
Data Set RVM # 1Dhist # rmAll # rmPru # rmSyn
Maxwell 2176.64(5)2105.34(3)2067.03(1)2113.98(4)2084.35(2)

Kitchenham 643.28(3) 529.01(1) 697.68(5) 529.01(2) 692.93(4)
Cocomo81 91.94(5) 76.16(1) 76.91(4) 76.27(2) 76.35(3)

Nasa93 100.08(5) 97.39(3) 96.34(2) 97.74(4) 93.70(1)
Org1 574.48(3) 602.31(4) 562.31(2) 605.39(5) 558.05(1)
Org2 624.81(1) 679.41(2) 698.53(4) 679.47(3) 701.90(5)
Org3 460.62(3) 414.93(1) 482.25(5) 415.46(2) 469.70(4)
Org4 2080.82(5)1968.64(2)2021.74(4)1968.64(1)2009.22(3)
Org5 2616.50(1)3120.77(2)3231.82(5)3185.10(3)3218.52(4)
Org6 1478.45(1)1642.26(3)1671.11(5)1654.37(4)1549.50(2)
Org7 4612.05(4)4436.62(1)4690.90(5)4468.52(2)4525.38(3)

aveRank 3.27 2.09 3.82 2.91 2.91

(c) LSD. Significant difference with p-value 0.008.
Data Set RVM # 1Dhist # rmAll # rmPru # rmSyn
Maxwell 0.81(5) 0.68(3) 0.68(2) 0.68(4) 0.68(1)

Kitchenham 0.65(3) 0.64(1) 0.69(4) 0.64(2) 0.69(5)
Cocomo81 1.95(5) 1.62(2) 1.67(3) 1.62(1) 1.67(4)

Nasa93 1.11(5) 0.87(3) 0.87(1) 0.87(4) 0.87(2)
Org1 1.00(3) 0.90(1) 1.01(5) 0.90(2) 1.00(4)
Org2 0.78(3) 0.77(1) 0.81(5) 0.77(2) 0.80(4)
Org3 0.74(1) 0.74(2) 1.78(5) 0.74(3) 1.58(4)
Org4 0.92(5) 0.88(2) 0.88(1) 0.88(3) 0.88(4)
Org5 1.09(5) 0.96(1) 0.99(3) 0.96(2) 1.01(4)
Org6 0.99(4) 0.92(1) 1.05(5) 0.92(2) 0.93(3)
Org7 0.95(1) 0.95(2) 0.96(4) 0.95(3) 0.96(5)

aveRank 3.64 1.73 3.45 2.55 3.64

(d) SA. Significant difference with p-value 1.68 ∗ 10−7.
Data Set RVM # 1Dhist # rmAll # rmPru # rmSyn
Maxwell 0.52(5) 0.55(1) 0.54(4) 0.55(2) 0.54(3)

Kitchenham 0.54(3) 0.55(1) 0.16(4) 0.55(2) 0.15(5)
Cocomo81 0.48(5) 0.49(1) 0.48(3) 0.49(2) 0.48(4)

Nasa93 0.58(5) 0.59(2) 0.59(3) 0.59(1) 0.59(4)
Org1 0.54(1) 0.51(2) 0.46(5) 0.50(3) 0.48(4)
Org2 0.40(5) 0.41(2) 0.40(4) 0.41(1) 0.40(3)
Org3 0.55(1) 0.53(2) -0.15(4) 0.53(3) -0.41(5)
Org4 0.43(3) 0.43(2) 0.42(4) 0.43(1) 0.42(5)
Org5 0.36(3) 0.45(1) -0.16(4) 0.44(2) -0.27(5)
Org6 0.47(4) 0.48(2) -0.20(5) 0.48(1) 0.48(3)
Org7 0.22(4) 0.24(2) 0.22(5) 0.24(1) 0.22(3)

aveRank 3.55 1.64 4.09 1.73 4.00

Comparison of Uncertain Estimation

For effort uncertain estimation, we follow the same procedure as in section 5.4.2 to evaluate

the performance of these methods based on the 12 CLs.

Regarding hit rate, we conduct Friedman tests at significance level 0.05 for each of

the 12 CLs. The null hypothesis (H0) states that the hit rate values of the methods are

equivalent across data sets. The alternative hypothesis (H1) states that at least one pair

of the methods differs in terms of hit rate for this CL. None of the 12 Friedman tests

can reject H0 with the p-values ranging from 0.0071 to 0.8945, indicating that # rmAll,

rmPru and # rmSyn produce similar hit rate to those of RVM and SynB-RVM 1Dhist.

Regarding relative width, we compare the width of PIs with similar hit rate. Table 5.9

112

Table 5.9: Similar hit rate of RVM, SynB-RVM 1Dhist, and its three variants. The reported
values are the mean of 30 runs of 10-fold CV. B HitR denotes the benchmark hit rate. The
chosen hit rate may correspond to different CLs.

Data Set B HitR RVM # 1Dhist # rmAll # rmPru # rmSyn
Maxwell 0.7237 0.7538 0.7161 0.7274 0.7161 0.7237

Kitchenham 0.9664 0.9749 0.9664 0.9630 0.9667 0.9621
Cocomo81 0.4392 0.4545 0.4698 0.4392 0.4646 0.4397

Nasa93 0.7993 0.7971 0.8032 0.8014 0.8032 0.7993
Org1 0.9272 0.9289 0.9325 0.9272 0.9316 0.9307
Org2 0.7677 0.7615 0.7677 0.7781 0.7677 0.7677
Org3 0.9765 0.9823 0.9739 0.9765 0.9739 0.9770
Org4 0.9339 0.9489 0.9347 0.9344 0.9347 0.9339
Org5 0.9286 0.9302 0.9571 0.9349 0.9032 0.9286
Org6 0.9636 0.9636 0.9530 0.9636 0.9530 0.9591
Org7 0.9492 0.9111 0.9492 0.9698 0.9492 0.9603

lists the 11 benchmark hit rate and the closest actual hit rate values of the investigated

methods to their corresponding benchmark values over all data sets. Friedman test with

the significance level 0.05 does not find significant difference on these hit rate values. The

p-value is 0.8077, showing the similarity of these values as desired for a fair comparison

of their corresponding relative widths.

Relative width in line with these similar hit rate is listed in table 5.10. Friedman test

with significance level 0.05 rejects null hypothesis (H0) with the p-value 3.46×10−4, where

the alternative hypothesis (H1) is accepted that at least one pair of the methods differs.

Post-hoc tests with Holm-Bonferroni corrections by comparing each method against SynB-

RVM 1Dhist detect significant difference over RVM, # rmAll, and # rmSyn with p-values

3.74× 10−4, 2.28× 10−4, and 2.161× 10−2 respectively. No significant difference has been

found over # rmPru.

Overall, analytical results verify the effectiveness of synthetic displacement and the two

components as a whole in improving the uncertain prediction performance of RVM. They

also suggest that synthetic displacement has a more significant impact than Bootstrap

pruning for uncertain prediction, being consistent with the conclusions on point prediction.

113

Table 5.10: Relative width of similar hit rate of the investigating methods. The reported values
are the mean of 30 runs of 10-fold CV. The last row lists the average rank. Significant difference
of Friedman tests across all data sets is highlighted in yellow (light grey).

Data Set RVM # 1Dhist # rmAll # rmPru # rmSyn
Maxwell 5.3690 1.1964 1.2165 1.2039 1.1998

Kitchenham 4.2984 4.1532 11.4185 4.0922 7.7285
Cocomo81 3.5037 1.0393 0.9260 1.0462 0.9203

Nasa93 7.6685 2.4906 2.5251 2.5062 2.5054
Org1 6.5292 4.2131 4.8810 4.2311 4.8688
Org2 1.7322 1.2572 1.5419 1.2651 1.4916
Org3 8.2039 6.9896 29.4600 7.0333 29.4159
Org4 4.5481 3.5339 3.2107 3.5560 3.2071
Org5 4.7894 3.3688 23.2198 2.4735 17.8844
Org6 11.2810 5.0420 13.7238 5.0735 11.8890
Org7 2.8612 3.0682 7.3683 3.0874 7.8995

aveRank 3.91 1.64 4.00 2.45 3.00

The Parameter of Bootstrap Pruning

It has been shown that Bootstrap pruning has less impact than synthetic displacement in

enhancing the baseline performance of RVM. This subsection further investigates how the

parameter choices of Bootstrap pruning affect point/uncertain prediction performance.

This analysis also provides the information whether this component should be removed if

practitioners have no time to tune its value.

Among the tuning parameters of SynB-RVM (shown in table 5.1), we find 3 pairs of

(M,ρ), each corresponding to one of the pruning rates {τ0, τ0.1, τ0.2}. Specifically, we find

the best parameter setting of (M,ρ) for τ0 and the worst settings of (M,ρ) for τ0.1 and τ0.2

in terms of MAE, MdAE, LSD, and SA respectively. In this manner, we can compare the

best performance without pruning against the worst performance with pruning. Then,

their performance is compared across data sets to investigate the impact of the pruning

rate. The null hypothesis (H0) states that their performance is equivalent across data

sets in terms of point/uncertain prediction.

Regarding point prediction performance, Friedman tests with the significance level

114

0.05 across data sets reject H0 with the p-values 5.31 × 10−9, 8.78 × 10−7, 9.42 × 10−8

and 5.31 × 10−9 for MAE, MdAE, LSD and SA respectively. Post-hoc tests with Holm-

Bonferroni corrections using the best performance without pruning as the control group

detect significant superiority over the worst performance with pruning rates τ0.1 and τ0.2

in terms of all performance metrics. Effect size values across 30 runs for each data set

against the control method are large/medium in all data sets except for Maxwell and Org6

in terms of MAE. This demonstrates consistent superiority of using Bootstrap pruning.

The magnitude of performance difference in terms of SA varies depending on the data

sets. It is usually larger for ISBSG data sets than for SEACRAFT. For instance, the

values of SA in Maxwell are similar being all around 0.54, but they have larger difference

for Org7 with values of 0.2380, -0.6479 and -0.6132 for τ0, τ0.1 and τ0.2 respectively. These

results indicate that the choice of Bootstrap pruning parameter is important for point

prediction. Given bad parameter settings of (M,ρ), using pruning may result in worse

performance than not using it.

Regarding hit rate, we conduct the same evaluation procedures as in section 5.4.2. In

terms of all performance metrics, Friedman tests with the significance level 0.05 across

data sets cannot reject H0 for all CLs with p-values from between 0.0518 to 1. These

results indicate that the choice of Bootstrap pruning parameter is insignificant for hit

rate. Regarding relative width, Friedman tests with the significance level 0.05 across

data sets cannot reject H0 with the p-value 0.3209, 0.2421, 0.0719 and 0.1812 for MAE,

MdAE, LSD and SA respectively. These results indicate that choice of Bootstrap pruning

parameter is insignificant for relative width.

Overall, analytical results show that parameter choice of Bootstrap pruning has sig-

nificant impact on point prediction performance. Bad parameter settings of Bootstrap

pruning can cause worse prediction performance than not to use this technique. Whereas,

the parameter choice of Bootstrap pruning has insignificant impact on uncertain predic-

115

tion performance significantly. In other words, hit rate and relative width are robust

to the pruning rate. In this sense, practitioners are suggested not to adopt Bootstrap

pruning when they do not have time to tune its parameter in case of bad point prediction

performance.

5.5.3 More Comparisons with Bagging for Point Prediction

Considering that the difference between SynB-RVM SpMn and Bagging+RVM for point

prediction is synthetic project displacement and Bootstrap pruning, we can compare the

two methods to judge the effectiveness of the two components as a whole. Wilcoxon

sign-rank test [189] is recommended to compare two methods across multiple data sets

[50]. The null hypothesis (H0) states that SynB-RVM SpMn and Bagging+RVM equal.

The alternative hypothesis (H1) states that they differ. Wilcoxon sign-rank test with the

significance level 0.05 rejects H0 with the p-values 0.0098, 0.0420, 0.000977, and 0.0049 in

terms of MAE, MdAE, LSD, and SA respectively, verifying the effectiveness of synthetic

displacement and Bootstrap pruning together in producing better point prediction per-

formance, which is consistent with the conclusion by comparing SynB-RVM SpMn and

rmAll from Friedman post-hoc tests in section 5.5.2.

Moreover, we conduct statistical tests between RVM and Bagging+RVM to study

whether Bagging ensemble is sufficient to improve point prediction performance of RVM.

The null hypothesis (H0) states that the two methods are equivalent. The alternative

hypothesis (H1) states that they differ. Wilcoxon sign-rank test with the significance

level 0.05 cannot reject H0 with the p-values 0.1475, 0.2061, 0.6377, and 0.0537 for MAE,

MdAE, LSD, and SA respectively, indicating Bagging cannot essentially promote point

prediction performance. It is probably because of the invertibility problem when training

RVM with replicated training examples.

Overall, synthetic displacement and Bootstrap pruning of SynB-RVM have the merits

116

in improving the point prediction performance, but Bagging ensemble alone cannot.

5.5.4 Correlation Between Point Performance and Relative Width

This section aims to investigate how much of good relative width of SynB-RVM is con-

tributed by good point prediction based on Spearman correlation.

Spearman’s rank correlation rs ∈ [−1,+1] is a non-parametric statistic that assesses

how well the relationship between two variables can be described by a monotonic function

[60]. The value +1/-1 means a perfectly increasing/decreasing monotone of one variable

over the other. Conventionally, the correlation strength |rs| is interpreted according to

Fieller and Pearson’s [60] as 0.00 – 0.19: very weak, 0.20 – 0.39: weak, 0.40 – 0.59:

moderate, 0.60 – 0.79: strong, and 0.80 – 1.00: very strong.

Specifically, Spearman correlation between point prediction and relative width across

all data sets is computed as illustrated in table 5.11. The left data column consists of the

point prediction performance across data sets in terms of MAE, MdAE, LSD, or SA; the

right data column consists of the relative width. The compared relative width is decided

following the procedures in section 5.4.2. In the end, we have four groups of data columns

as table 5.11, each corresponding to one performance metric of point prediction.

Table 5.12 lists the results. We can see that the correlation is very weak in terms

of MAE, MdAE, and SA, where good point prediction has little effect on narrower PIs.

Whereas, there is a weak correlation in terms of LSD, where better point prediction leads

to narrower PIs with CLs. Therefore, point prediction sometimes has an influence on

uncertain prediction. As a result, we should choose a good point estimator for use with

the uncertain method. Nevertheless, the uncertain method plays a more important role

in contributing narrower PIs, since the correlation between point prediction performance

and relative width is (very) weak. The choice of uncertain method also has an impact as

shown in table 5.5. In particular, some uncertain methods do better than the others.

117

Table 5.11: Data columns of point prediction error and relative width across SEE data sets and
uncertain methods. ‘PF’ is the acronym of performance in terms of MAE, MdAE, LSD or SA.
There are four such tables to compute Spearman correlation, one for each performance metric.

Group 1. Point Performance Group 2. relative width
PF of Btstrp-ATLM in Maxwell rWidth of Btstrp-ATLM in Maxwell

...
...

PF of Btstrp-ATLM in Org7 rWidth of Btstrp-ATLM in Org7
PF of Btstrp-RVM in Maxwell rWidth of Btstrp-RVM in Maxwell

...
...

PF of Btstrp-RVM in Org7 rWidth of Btstrp-RVM in Org7
PF of Emp-ATLM in Maxwell rWidth of Emp-ATLM in Maxwell

...
...

PF of Emp-ATLM in Org7 rWidth of Emp-ATLM in Org7
PF of Emp-RVM in Maxwell rWidth of Emp-RVM in Maxwell

...
...

PF of Emp-RVM in Org7 rWidth of Emp-RVM in Org7
PF of SynB-RVM SpMn in Maxwell rWidth of SynB-RVM SpMn in Maxwell

...
...

PF of SynB-RVM SpMn in Org7 rWidth of SynB-RVM SpMn in Org7
PF of SynB-RVM 1Dhist in Maxwell rWidth of SynB-RVM 1Dhist in Maxwell

...
...

PF of SynB-RVM 1Dhist in Org7 rWidth of SynB-RVM 1Dhist in Org7
PF of SynB-RVM 2Dhist in Maxwell rWidth of SynB-RVM 2Dhist in Maxwell

...
...

PF of SynB-RVM 2Dhist in Org7 rWidth of SynB-RVM 2Dhist in Org7

5.5.5 Brief Summary

The three versions of SynB-RVM perform similarly in terms of both point and uncertain

prediction, indicating that the three ways of deriving the final prediction in section 5.2.2

are possibly similar. Another reason for the similar performance could be the small

training set, based on which ŷ and σ̂ are estimated.

Table 5.13 summarizes the effectiveness of SynB-RVM’s components. Synthetic dis-

placement and the two components as a whole have the merits in improving the perfor-

mance of RVM in terms of both point and uncertain prediction. Synthetic displacement

has more significant impact than Bootstrap pruning for point and uncertain prediction.

118

Table 5.12: Spearman correlation between point prediction performance and relative width
across data sets and uncertain methods. Data columns for Spearman calculation is in table 5.11.

PF metric rs
MAE -0.005
MdAE -0.091
LSD 0.297
SA 0.007

Table 5.13: Summary of the effectiveness of SynB-RVM components. The point prediction
metrics include MAE, MdAE, LSD, and SA; the uncertain prediction metrics include hit rate
and relative width. Equality/positive sign denotes no-different/significantly better performance
of SynB-RVM SpMn against the other method.

PF Metric RVM # rmAll # rmPru # rmSyn
MAE + + = +
MdAE = = = =
LSD + + = +
SA + + = +

hitR = = = =
rWidth + + = +

5.6 Implications to Practice

5.6.1 Prediction Performance and Data Set Characteristics

This section investigates the correlation between improvement ratio of point and uncertain

prediction and SEE data characteristics including complexity, linearity, and clustering.

• Improvement ratio of method P1 over P2 in terms of metric γ is defined as

imp ratio =


γ(P2)−γ(P1)

min{γ(P1),γ(P2)} , γ ∈ {relative width, MAE, MdAE, LSD}
γ(P1)−γ(P2)

min{γ(P1),γ(P2)} , γ ∈ {SA}
(5.10)

Improvement ratio of P1 over P2 is positive if P1 is superior to P2 and negative if otherwise.

• Complexity of a data set is defined as the division of the number of features over the

number of data samples as
complexity = #fea

#data. (5.11)

Larger values mean that the data set is harder for SEE.

119

• Linearity of a data set is defined by the Pearson correlation between effort values

in the logarithm scale and the features such as line of codes and functional size in the

logarithm scale. Logarithm scale is applied because these features and effort values of SEE

data are often skewed and thus appropriate transformations, such as logarithm, are often

required to form a proper and normal shape [99]. The size-related features or estimation

of completion date or effort are chosen due to the well-known fact that they are usually

the most correlated with the effort on the data sets used in this study [40, 122].

• Clustering of a data set is defined by the number of clusters the projects could be

divided into. We adopt k-Means [155], for its popularity and effectiveness to improve the

performance of SEE based on normalised features and Euclidean distance [163, 136].

The cluster number k is determined among k = {2, 3, 4, 5} based on the criterion

silhouette values [157], which measures the similarity of a project to its own cluster in

comparison to the other clusters. The silhouette value of each project pi is calculated as

follows. (1) Compute a(i) as the average distance between pi and the other projects of

the cluster where pi locates. (2) Compute b(i) as the smallest average distance of pi to

the projects across the clusters where pi is not a member. (3) The silhouette value of pi

is defined as
s(i) = b(i)− a(i)

max{a(i), b(i)} ∈ [−1, 1].

The average {s(i)} across all projects measures how appropriately the projects have been

clustered. The larger the silhouette value, the more appropriate the cluster configuration.

We adopt this metric of clustering since it can be used to determine the number of clusters,

provide a succinct graphical representation of how well each object lies within its cluster,

and was suggested in Minku et al.’s [136].

The validating procedures are implemented by a MATLAB built-in function evalclus-

ters(). Clusters with less than three projects are not considered as a valid division, and

thus not counted towards the total number of clusters of the data set. As k-Means is not

120

a deterministic method, i.e., it cannot always retrieve the same clusters when the same

data projects are used, we run ten times of the validating procedures and choose the k

with the largest silhouette as the final clustering.

Specifically, we calculate the improvement ratio of SynB-RVM 1Dhist over RVM and

EmpATLM on each data set, and then compute the Spearman correlation between these

improvement ratios and complexity/linearity/clustering characteristics across data sets.

SynB-RVM 1Dhist is chosen among the three versions for usually performing the best,

RVM is chosen for being the baseline of SynB-RVM, and EmpATLM is chosen for per-

forming the best among the ATLM-based methods. Table 5.14(a) lists the characteristics

of data sets and the improvement ratios of SynB-RVM over RVM/EmpATLM. Some data

sets such as Maxwell and Cocomo81 are more linear than others such as Org7 and Org4.

The complexity of the data sets varies ranging from Org3 at 0.0185 (relatively easy) to

Maxwell at 0.3710 (relatively hard). The number of clusters is usually not more than

four. Overall, we have multiple types of data sets to represent SEE in practice.

Table 5.14(b) lists the Spearman correlation between the improvement ratio and the

characteristic across SEE data sets as follows

•With respect to RVM, the improvement ratio of our method is larger in the data sets

that are more complex or more linear in terms of point and uncertain prediction, shown by

the large positive correlation in yellow (light grey) in table 5.14(b). Regarding complexity,

a possible reason could be that by using Bootstrap resampling, our method would enlarge

the training set of this Bootstrap bag, and thus obtain larger improvement over the

prediction performance of the baseline RVM on more complex data sets. Regarding

linearity, a possible reason could be the synthetic displacement technique of our method.

The synthetic project is generated by a linear combination of a replicated training example

and its furthest neighbour. Thus, a more linear data set would lead to synthetic projects

with higher quality, potentially contributing to better prediction performance.

121

Table 5.14: Analysis of the correlation between performance and data characteristics.
(a) Characteristics of SEE data sets with respect to complexity/linearity/clustering and improvement ratio
of SynB-RVM 1Dhist over RVM/EmpATLM quantified by Eq. (5.10).

Data Set Complexity Linearity #Clusters Improvement Ratio over RVM Improvement Ratio over EmpATLM
rwdth MAE MdAE LSD SA rwdth MAE MdAE LSD SA

Maxwell 0.3710 0.8184 2 3.7643 0.0575 0.0339 0.1915 0.0568 0.2940 0.0304 0.0051 0.1307 0.0318
Kitchenham 0.0207 0.7263 1 0.0372 0.0306 0.2160 0.0032 0.0167 -0.1538 -0.0443 0.1090 0.0253 -0.0406
Cocomo81 0.2698 0.8466 2 3.4993 0.0285 0.2071 0.2002 0.0240 -0.9902 -1.1752 -1.2891 -1.9609 -0.5541

Nasa93 0.1828 0.8435 3 8.8860 0.0434 0.0276 0.2786 0.0253 -0.7137 -0.2552 -0.4587 -0.2126 -0.1424
Org1 0.0395 0.7422 4 0.5504 -0.0664 -0.0484 0.1199 -0.0687 -0.0582 -0.1616 -0.2329 -0.0238 -0.1386
Org2 0.0938 0.6763 4 0.5631 0.0231 -0.0874 0.0154 0.0393 0.0109 0.0172 0.1735 -0.1290 0.0293
Org3 0.0185 0.8019 2 -0.0168 -0.0459 0.1101 -0.0061 -0.0429 -1.7163 -0.1045 -0.0227 0.0256 -0.0879
Org4 0.0246 0.6263 4 0.2869 0.0071 0.0570 0.0415 0.0067 0.1111 0.0398 -0.2510 -0.0493 0.0552
Org5 0.1429 0.8236 3 0.4375 0.1162 -0.1927 0.1417 0.2509 0.4768 -0.4063 -0.5018 -0.1684 -0.1267
Org6 0.1364 0.7845 1 1.5207 0.0163 -0.1108 0.0710 0.0148 -0.5763 0.7542 -0.4641 -0.1286 4.3986
Org7 0.1429 0.5138 2 0.2805 0.0141 0.0395 -0.0027 0.0660 0.9841 -0.1029 -0.5507 0.0743 -0.2784

(b) Spearman correlation between the improvement ratio and complexity/linearity/clustering across SEE
data sets. The moderate/(very) strong correlation is highlighted in yellow (light grey).

Metric SynB-RVM 1Dhist vs RVM SynB-RVM 1Dhist vs EmpATLM
Complexity Linearity Clustering Complexity Linearity Clustering

rwdth 0.7927 0.5727 0.1180 0.2323 -0.4818 0.2691
MAE 0.6241 0.5364 -0.2171 -0.2642 -0.6000 -0.1605

MdAE -0.2460 -0.0727 -0.3540 0.1454 -0.3091 0.1416
LSD 0.7563 0.7455 0.1794 -0.2597 -0.5091 -0.2785
SA 0.6606 0.1273 -0.0566 -0.3235 -0.3273 -0.0755

• With respect to EmpATLM, the improvement ratio of SynB-RVM is smaller in

more linear data sets in terms of point and uncertain prediction. A possible reason is that

EmpATLM is designed (and thus should be more suitable) for more linear data sets, and

such factor is stronger than the enhancement of more linear data to SynB-RVM. With

respect to clustering, the correlation is (very) weak and thus neglectable for the improve

ratios over both RVM and EmpATLM. It means that the clustering of a data set does

not have impact on the choice of adopting our method against other uncertain methods.

Overall, when the data sets are harder or more linear, practitioners are suggested to

use SynB-RVM rather than RVM for better point and uncertain prediction. The more

linear the data set, the smaller the improvement ratio of SynB-RVM over EmpATLM.

5.6.2 Understandability vs. Better Performance

This section aims to discuss the trade-off between understandability and better prediction

performance of uncertain methods.

122

ATLM is easy to understand as a variant of MLR; whereas RVM lays its foundation

on Bayesian framework and thus requires more background knowledge to understand.

As our proposed methods are based on RVM, the model is more difficult to interpret

than those based on ATLM. Nevertheless, the mechanisms used to produce the PIs of

the uncertain approaches have conceptually equal understandability: EmpSEEr1 employs

the error distribution of training examples to decide the upper and lower bounds of the

PI of a testing example; BtstrpSEEr2 extracts two values from multiple point estimates

to form the upper and lower bounds of the PI; SynB-RVM integrates multiple uncertain

predictions into one through averaging. Their final point estimate is either a single value

(for EmpSEEr) or the mean of multiple values (for BtstrpSEEr and SynB-RVM).

When practitioners are more keen to understand the SEE models, ATLM-related meth-

ods would be more attractive with a sacrifice on uncertain prediction performance. In

particular, if practitioners do not value PIs, ATLM would provide both interpretability

and good point prediction, being recommended. However, when practitioners are more

concerned on uncertain prediction, SynB-RVM would be their best option for being robust

and having statistically better or similar point and uncertain prediction performance.

Overall, there is a trade-off between superiority in prediction performance and under-

standability when selecting an SEE method.

5.6.3 Time Complexity of Uncertain Methods

This section analyses time complexity of uncertain methods with respect to training and

prediction phases given training set size N . Since uncertain methods are based on ATLM

or RVM, we would analyse the complexity of RVM and ATLM at first.

As ATLM is a variant of MLR with automated data transformation (appendix A.1),

its time complexity is O(N3) for model training and O(N) for prediction, ignoring the
1EmpSEEr denotes EmpRVM or EmpATLM.
2BtstrpSEEr denotes BtstrpRVM or BtstrpATLM.

123

time complexity of data preprocessing. Note that ATLM itself cannot provide uncertain

prediction and needs to be integrated with EmpSEEr/BtstrpSEEr.

The model parameters of RVM need to be updated alternatively [177]. Suppose K to

be the iterations by which the learning algorithm of RVM converges. At each iteration, the

training process includes an N ×N matrix multiplication and a N ×N matrix inversion,

leading to the overall complexity O(KN3). The testing phase includes the multiplication

of an N × 1 vector and an N ×N matrix, leading to the complexity O(N2).

BtstrpSEEr’s training phase consists of constructing M base models based on the M

Bootstrap bags, leading to O(M ∗N3) for BtstrpATLM and O(M ∗KN3) for BtstrpRVM

(section 5.3.4). Its prediction phase includes: (1) giving M point estimates, (2) sorting

the M point estimates, and (3) extracting certain percentiles for upper and lower bounds

of the PI. Thus, the time complexity of the prediction phase is O(M ∗V)+O(M2)+O(1),

where V is the prediction complexity of the base model and O(M2) is the worst complexity

of sorting M values. In particular, the prediction complexity is O(M ∗ N) + O(M2) for

BtstrpATLM and O(M ∗N2) + O(M2) for BtstrpRVM.

EmpSEEr’s training phase consists of (1) constructing base model, (2) computing the

training errors, (3) sorting the error of size N , and (4) extracting certain percentiles of

the error for upper and lower bounds of the PI (section 5.3.4). Accordingly, the time

complexity is O(V) + O(N) + O(N2) + O(1), where V is the training complexity of the

base model and O(N2) is the worst time complexity of sorting N values. In particular, the

training time complexity is O(N3) for EmpATLM and O(KN3) for EmpRVM. EmpSEEr’s

prediction phase consists of (1) giving the point estimate of the testing example and

(2) computing the lower and upper bounds of PIs as Eq. (5.7). Accordingly, the time

complexity is O(V) + O(1). In particular, the prediction time complexity is O(N) for

EmpATLM and O(N2) for EmpRVM.

SynB-RVM’s training phase consists of constructing M RVMs from the M Boot-

124

Table 5.15: Time complexity of uncertain SEE methods with respect to training and prediction
phases. Denote N as the training size, M as the number of Bootstrap bags, and K as the
iterations that the algorithm of RVM converges. Note that ATLM itself cannot provide uncertain
prediction. In practice, the training and prediction processes of BtstrpSEEr/SynB-RVM can be
proceeded in parallel, largely reducing time complexity.

Complexity ATLM RVM BtstrpATLM BtstrpRVM EmpATLMEmpRVM SynB-RVM
training O(N3)O(KN3) O(M ∗N3) O(M ∗KN3) O(N3) O(KN3) O(M ∗KN3)

prediction O(N) O(N2) O(M ∗N) + O(M2)O(M ∗N2) + O(M2) O(N) O(N2) O(M ∗N2)

strap bags (section 5.2.1), leading to the complexity O(M ∗ KN3). SynB-RVM’s pre-

diction phase consists of (1) obtaining M uncertain estimates of the testing example,

each corresponding to one of the RVMs, (2) combining the M uncertain estimates using

Eq. (5.1)∼(5.3), and (3) extracting certain percentiles for upper and lower bounds of PIs

(section 5.2.2), leading to the complexity O(M ∗N2) + O(M) + O(1) = O(M ∗N2).

Table 5.15 summarizes the time complexity of uncertain methods. We can see that

EmpATLM, EmpRVM, and RVM have lower time complexity in both training and pre-

diction phases than SynB-RVM. Nevertheless, SynB-RVM can achieve significantly better

point/uncertain prediction performance as shown in table 5.7. In practice, the time com-

plexity of SynB-RVM can be largely reduced by proceeding the training and prediction

processes of M Bootstrap ensembles in parallel.

Overall, there is a trade-off between computational cost and good uncertain prediction

performance: the practitioners are suggested to take faster methods such as EmpATLM

when they are more concerned with the computational efficiency; whereas, they are sug-

gested to take SynB-RVM when they are keen for better uncertain prediction.

5.7 Summary and Discussion

5.7.1 Summary

This chapter ensembles a set of RVMs into a unified uncertain effort estimator, answering

the third research question of the thesis. The proposed SynB-RVM adopts Bootstrap

125

resampling to produce multiple RVMs based on adapted training bags whose replicated

training examples are replaced with their synthetic counterparts. Those RVMs are then

incorporated RVMs into a unified uncertain effort estimator.

The performance of SynB-RVM has been validated by answering the three sub-research

questions outlined in section 5.1 as follows.

• RQ3.1: When used as a point estimator, how well can SynB-RVM perform com-

pared with other SEE methods? Experimental results show that SynB-RVM can either

significantly outperform or have similar point prediction performance compared to other

SEE methods. Specifically, SynB-RVM significantly outperforms RVM (EmpRVM), Bt-

strpRVM (Bagging+RVM), k-NN, SVR, MLP, RT, Bagging+RT, and Bagging+SVR with

respect to at least one performance metric; it performs similarly to ATLM (EmpATLM)

and BtstrpATLM (Bagging+ATLM).

• RQ3.2. When used as an uncertain estimator, can SynB-RVM’s PIs achieve adequate

hit rate with narrower and more informative PIs? In terms of hit rate, SynB-RVM usually

has significantly better performance than other SEE methods except for RVM. In terms

of relative width, SynB-RVM usually produces significantly better PIs with CLs than

those from RVM and BtstrpRVM; it performs similarly to EmpRVM, BtstrATLM, and

EmpATLM. Nevertheless, SynB-RVM has performance superiority with medium/large

effect size over EmpRVM, BtstrATLM, and EmpATLM in most data sets.

• RQ3.3. Which components of SynB-RVM contribute to the point and uncertain

prediction performance improvement? Analytical results show that the three versions of

SynB-RVM perform similarly in terms of point and uncertain prediction. SynB-RVM has

two key components: synthetic displacement and Bootstrap pruning. Analytical results

show the effectiveness of synthetic displacement and the two components as a whole in

improving the performance of RVM in terms of both point and uncertain prediction. They

also suggest that synthetic displacement has a more significant impact than Bootstrap

126

pruning on point and uncertain prediction.

Besides the main contributions in proposing and validating a novel uncertain estimator,

we are the first to provide a thorough experimental comparison on uncertain SEE methods.

Due to the encouraging results, SynB-RVM is likely to help project managers to make

better informed decisions by accessing the project management risks.

5.7.2 Discussion

This subsection discusses some points regarding SynB-RVM as follows.

SynB-RVM’s Base Model

SynB-RVM needs a base model, like RVMs, which are capable of deriving uncertain effort

estimation themselves. It then combines those uncertain estimates into a unified one

when making an estimate for a testing example. Therefore, the prediction uncertainty

originates from each base model when giving uncertain prediction for the testing example.

However, other uncertain methods utilize only the point estimates of their base models,

from which their prediction uncertainty of the testing example is derived. Therefore,

our method can be considered to use richer uncertain information to produce PIs with

CLs than other uncertain methods. Moreover, our method can be considered as a way

to combine potentially ‘weaker’ uncertain estimates into a stronger one. Experimental

results in comparing the uncertain estimation between RVM and SynB-RVM (Sec. 5.4.2)

verify this statement.

SynB-RVM’s Extension

SynB-RVM can be extended with other base models as long as they can provide an un-

certain estimate for a testing example. The base model can be a single estimator like

RVM that can provide uncertain prediction itself or an ensemble of point estimators like

EmpRVM that can produce uncertain prediction as a group. In this sense, a more general

name of the proposed approach can be Synthetic Bootstrap ensemble of Probabilistic Pre-

127

dictors. The experimental investigation and evaluation on the more general framework

are left as future work.

Non-Symmetric Uncertain Effort Estimation

SynB-RVM assumes that the predicted effort values of a software project follow Gaussian

distribution as discussed in section 2.2.2. The Gaussian assumption is reasonable accord-

ing to central limit theorem [145] by considering the noise factors as independent random

processes. However, this effort noise assumption disregards the fact that the software

efforts have to be positive.

With the assumption of Gaussian effort noise, the probabilistic prediction is symmetric

as shown in figure A.1. However, when the PDF of the estimated effort values overlaps

the negative quadrant, the positive requirement of effort values would push the negative

values right-moved to be non-negative, making the symmetric probability right-skewed.

Consequently, non-symmetric right-skewed PIs would be better, where the right parts

of PIs are wider and heavier than the left. Accordingly, the Gaussian effort noise as-

sumption may be problematic in causing less informative PIs when the predicted effort

values overlap the negative quadrant since the symmetric PIs are produced. To cater

such issue, we can relax the Gaussian assumption of effort noise in RVM by considering

other non-symmetric effort noise models such as righted-skewed Gaussian [14] or Gamma

distribution [80]. However, the revision on the noise assumption of RVM would fail the

analytical solutions, and lead to considerably complicated deductions. A potential simpler

solution is to adjust the predicted effort probability slightly rightward according to the

skewness of the point estimates from RVMs. We leave it as our future work for further

improving our method’s uncertain estimation.

128

CHAPTER 6

Sensitivity to Parameter Settings for SEE Methods

in Online Scenario

6.1 Introduction

Prediction performance of SEE methods can be affected by many factors, frequently

leading to different conclusions [98, 83, 125]. Examples of factors include the data sets

investigated, the performance metrics, the data preprocessing procedures, the ways to

divide data into training and testing sets, and the amount of parameter tuning for SEE

methods [134]. The effect of different data sets and performance metrics has been rel-

atively well known [164, 63, 135, 136], but there has been little work investigating the

effect that different parameter settings may have for SEE methods.

In SEE literature, the methodology of choosing parameter settings is frequently omit-

ted from the experimental framework, seemingly making an implicit assumption that

parameter settings will not change the performance of SEE methods significantly [136].

However, it is good to know to what extent different parameter settings affect the perfor-
0This chapter corresponds to RQ4 in section 1.1.4, and is based on our published paper [169].

129

mance of SEE methods. Such knowledge will be very valuable for the SEE community,

which could guide the choice of SEE methods. For instance, it would be useful to know

whether a method that frequently performs better is in fact highly dependent on the fine

tuning of its model parameters. Therefore, sensitivity to parameter settings should be

taken as another criterion for evaluating SEE methods.

Chronology of the software projects is another issue that is worthwhile to consider for

evaluating SEE methods in practice. Most SEE methods take an offline scenario, where

the training and testing projects are taken as a chunk of stationary training examples

without change or chronological ordering [136, 170, 171, 187]. However, when the effort

of a new project is predicted, SEE methods can only use projects that have already been

completed by that time step. Besides, the environment where the SEE methods operate is

unlikely to be stationary (e.g. new employees can be hired or lost) and the characteristic

of the completed software projects is more likely to change with time. Therefore, it is

more rational to take an online scenario for SEE, where completed projects keep arriving

with time and participating in the training process. As a result, analysis of sensitivity to

parameter settings should consider not only the effect of parameter settings across time

steps, but also the effect throughout time steps (i.e., at each time step).

This chapter aims to investigate the sensitivity to parameter settings for SEE methods

in the online scenario by answering the fourth research question of the thesis:

RQ4. To what extent do parameter settings affect the performance of SEE

methods, and should we pay attention to their parameter tuning?

To answer RQ4, systematic experiments will be conducted based on five popular SEE

methods with different parameter settings on three SEE data sets that have chronological

information. The performance of the best, default and worst parameter settings for each

method on each data set will be computed, based on which the sensitivity to different

parameter settings will be analysed.

130

Given an SEE method and a chronological data set, RQ4 can be further divided into

the following three sub-research questions:

• RQ4.1: How sensitive is an SEE method to its parameter settings in terms of average

performance across time steps?

• RQ4.2: Does the best parameter setting of an SEE method in terms of average

performance across time steps perform consistently well throughout time steps in

comparison to other parameter settings?

• RQ4.3: Bagging ensemble of SEE methods has been shown to obtain good results.

Could Bagging help to lessen the base learners’ sensitivity to parameter settings?

Answering RQ4.1 and RQ4.2 can provide an insight on which of the SEE methods are more

sensitive to their parameters. Answering RQ4.3 enables us to gain a better understanding

of the behaviour of Bagging ensemble in view of the sensitivity to parameter settings.

Experimental results show that while some SEE methods such as Bagging+RT are

not very sensitive to parameter settings, others such as MLP are affected dramatically.

Combining SEE methods into Bagging can help the performance of the default parameter

settings closer to the best parameter ones. In other words, the performance of Bagging

ensemble is more robust to different parameter settings. The average performance of

k-NN is not so much affected by different parameter settings.

The remaining of this chapter is organised as follows. Section 6.2 presents the analyt-

ical methodology and experimental framework to answer RQ4 of the thesis including the

online scenario for SEE, the data sets investigated, and the SEE methods. Section 6.3

discusses the experimental results. This chapter is summarized in section 6.4.

6.2 Analysis Methodology and Experimental Design

This section presents our analysis methodology and the experimental design for investi-

gating the sensitivity to parameter settings of SEE methods.

131

6.2.1 Online Scenario

As discussed in section 6.1, most SEE studies take an offline scenario [136, 170, 171, 187],

where models are built upon a set of projects (training examples) and tested in another

set of projects (testing examples). In the offline scenario, the training and testing projects

are taken as a chunk of stationary training examples without order or change.

However, software developing companies and their employees are unlikely to be sta-

tionary but evolve with time. For instance, new employees can be hired or lost, training

can be provided and the employees can become more experienced, new types of software

projects can be accepted, the management strategy can change, and new programming

languages can be introduced [138]. As such changing environment is highly likely to af-

fect the performance of SEE methods [136], it is rational to consider the chronology of

projects. It is also important to evaluate SEE methods considering not only their overall

performance across time steps, but also the performance throughout time.

Similarly to Minku and Yao’s [136], we consider the online scenario, where a new

project is received as a training example at each time step, forming a data stream. At

each time step, after an SEE method is trained on the completed projects received so far,

next ten projects of the data stream are predicted. In other words, the performance of

the SEE method at this time step is calculated based on the following ten projects. We

consider ten as reasonable because not many projects are produced per year by a company.

SEE methods investigated in this chapter are assessed according to this evaluation process.

6.2.2 Data Sets with Chronological Information

Three data sets including Kitchenham, Maxwell, and SingleISBSG are chosen in this work

for being available to access the chronological information that can be used to sort projects

to perform online scenario. The detailed description of Kitchenham and Maxwell can be

found in section 2.4.1 except that the projects are sorted by the actual starting date plus

132

the duration, which approximately corresponds to the completion order of the projects.

SingleISBSG is a subset of ISBSG Repository Release 10, previously used in [136]. It

comprises 69 projects from a single-company with the following characteristics:

• Data and function points of quality A (assessed as being sound with nothing being

identified that might affect their integrity) or B (appears sound but there are some

factors which could affect their integrity).

• Recorded effort that considers only development team.

• Normalised effort equal to total recorded effort, meaning that the reported effort is

the actual effort across the whole life cycle.

• Functional sizing method IFPUG version 4+ or identified as with addendum to

existing standards.

• Implementation date after the year 2001.

The following procedures are performed to preprocess the software projects:

1. Sort the projects according to the implementation date.

2. Select development type, language type, development platform, and functional size

as input features, as recommended by ISBSG [77]. The output variable is the effort

in hours. Remove all the other variables.

3. Treat missing values using 1-NN imputation [37]. Only two projects contained

missing values.

6.2.3 Benchmark SEE Methods

This chapter investigates five SEE methods: RT, k-NN, MLP, Bagging with RT (Bag-

ging+RT), and Bagging with MLP (Bagging+MLP). An online learning class was devel-

oped so that the WEKA implementations of these methods could be used. RT was based

on REPTree without pruning, k-NN was based on IBK with normalised attributes and

Euclidean distance, and the other methods were based on the implementations with the

same name in WEKA.

133

RT, Bagging+RT and Bagging+MLP are chosen because they have been shown to

perform well in comparison to other SEE methods [136]. Nevertheless, the evaluation of

these methods has not considered their sensitivity to parameter settings. Knowledge on

whether these methods are very sensitive to parameter choices would be important for

deciding whether to use them. Bagging ensemble has been shown to be able to improve

the frequency that their base learners are ranked first in terms of MAE [136]. Thus, it

would be good to know whether they could also make these approaches less sensitive to

parameter settings.

K-NN is among the simplest SEE methods, and is included in the analysis because

it can perform frequently very well, but sometimes considerably worse than the best

SEE method depending on the data set [136]. It would be useful to know whether the

sensitivity to data sets also applies to the sensitivity to parameter settings.

MLP has not been shown to be frequently among the best approaches as the others

in our analysis [136]. However, it is not known whether this method is performing badly

because it is not able to achieve good performance, or if it is highly sensitive to parameter

settings and thus difficult to tune, or if some guidelines on its parameter choices could

improve its performance. Therefore, the main reason to analyse MLP is to provide a

better understanding of the behaviour of this method for SEE.

The investigated parameter settings are listed in table 6.1. Their default parameter

values are emphasized in bold and correspond to the default values of WEKA, which are

considered to perform generally well. For RT, the maximum depth of -1 means unlimited

depth. For MLP, the default value a in the number of nodes of each layer is calculated as

a = #(attribute) + #(classes)
2 , (6.1)

where #(attributes) is the number of input attributes, and #(classes) is the number of

outputs that equals to one for SEE.

134

Table 6.1: Parameter values of the investigated SEE methods. Default parameter values
are highlighted in bold and correspond to the default settings of WEKA that perform
generally well. The parameter settings of an SEE method consist of traversing all values
of one parameter and keeping the others to the default.

Approach Parameters

RT
M(min.# instance/leaf)={1,2,3,6,12,20}
V(min.variance for split)= {0.0001,0.001,0.01,0.1,10}
L(max.tree depth) = { -1,2,6,10,15,20}

k-NN k(# neighbours)={1,3,5,7,9,11,13,15,17,19,21}

MLP

L(Learning rate)={0.1, 0.2, 0.3, 0.4, 0.5}
M(Momentum)={0.1,0.2,0.3,0.4,0.5}
N(# epochs)={100,500,1000}
H(# nodes of each layer)={a,1,3,5,9}

Bagging # I(iteration for Bagging)={5,10,25,50,75}
All the possible parameters of the base learners, as shown above.

Note that it is impossible and not necessary to investigate all possible parameter values,

which would be infinite. We believe that the parameter values investigated in table 6.1

form a good range for each of the parameters considered in this study. Additional values

could be investigated as future work.

6.2.4 Evaluation of Sensitivity to Parameter Settings

This section proposes the analytical methodology that investigates the sensitivity to pa-

rameter settings of an SEE method in the online scenario.

Given an SEE method and a data set, we can evaluate the performance of this method

in all parameter settings at each time step. Specifically, for non-deterministic methods

including MLP, Bagging+RT, and Bagging+MLP, 30 runs are taken to calculate the

mean performance at each time step. In this chapter, the performance at each time step

is measured in MAE over the estimates on the next ten projects of the data stream as
T∑
t=1

|yt − ŷt|
T

(6.2)

where T = 10 is the number of testing projects, yt denotes the actual effort at the next

tth time step and ŷt is the estimated effort value. MAE is chosen for being a symmetric

135

measure not biased towards under or overestimation (section 2.4.2). Performance analysis

in terms of other point prediction metric can be considered as future work.

We can calculate the average performance of the SEE method across times steps, and

determine the best/worst parameter settings in terms of the average performance across

time steps. The performance of the default parameter settings can also be obtained. The

performance STD across time steps can be calculated for deterministic methods directly.

For non-deterministic SEE methods, the average STD across time steps is calculated

based on the pooled STDs over all time steps as

stdave =
√
std2

1 + std2
2 + ...+ std2

n

n
, (6.3)

where n is the the number of rounds executed (30 runs) and stdi is the STD across time

steps at the ith round of execution.

To investigate to what extent an SEE method is sensitive to its parameter setting,

the performance of the best and worst parameter settings are compared using Cohen’s d

(appendix B.3), being calculated based on the pooled standard deviation as

d1 = MAEw −MAEb√
std2

w+std2
b

2

, (6.4)

where MAEw (MAEb) is the average MAE across time steps in the worse (best) parameter

setting, and stdw (stdb) denotes the corresponding average STD across time steps. The

effect size between the best and the default parameter settings is calculated in a similar

way as part of the analysis as

d2 = MAEd −MAEb√
std2

d
+std2

b

2

. (6.5)

The effect size between the default and the worst parameter settings is referred to as

d3 = MAEw −MAEd√
std2

w+std2
d

2

. (6.6)

136

When it is problematic to use pooled STDs in the analysis due to the infinite value as

explained shortly in section 6.3, one of the parameter settings would be chosen as the

control group, and its corresponding STD, instead of the pooled STD, is used to calculate

the effect size. Effect size d is interpreted in terms of Cohen’s categories [164] as: small

(≈ 0.2), medium (≈ 0.5) and large (≈ 0.8). Cohen’s d rather than Vargha and Delaney’s

A12 is chosen since it quantifies the magnitude of performance difference between different

parameter settings; whereas, Vargha and Delaney’s A12 [183] computes the frequency of

one parameter setting superior to the other.

It is worthwhile to note that the pooled STD of Eq. (6.3) assumes the independence

of individual STDs across time steps, which are probably positively correlated due to the

overlap between testing projects, causing over/underestimated pooled STDs. However,

the proposed methodology cares for the comparison between d1, d2, and d3, which are

computed from pooled STDs, and thus cancels out the mistakes of pooled STDs. In this

way, there would be little impact to our judgement on the sensitivity of an SEE method

to its parameter settings.

Given an SEE method and a data set, the analytical procedures are listed as follows.

(1) If d1 is small (around 0.2), the performances of the best and the worst parameter

settings are considered fairly similar, and we can claim that this method is not sensitive

to parameter settings on this data set. If this observation can be generalized to other

data sets, this method is considered robust to parameter settings in general. (2) If d1 is

medium (around 0.5) or large (around 0.8), the method is somewhat or highly sensitive

to its parameter settings. In this case, d2 will reveal whether a default parameter setting

can provide reasonable performance despite the overall sensitivity to parameter settings.

If d2 is small or medium, it means that though this method is sensitive to the overall

parameter choices, its default parameter setting can perform fairly well, and we can

simply adopt its default parameter setting. However, if d2 is large, the performance of

137

default parameter setting is significantly worse than that of the best parameter setting.

Thus, we should pay attention to tuning the parameters of this method. (3) In this

case, we step further to calculate d3. If d3 is large (more than 0.8), it means that even

though the performance of the default parameter setting is significantly worse than the

best one, it is still significantly better than the worst one and thus helpful. Therefore,

if the project managers do not have enough data or time to do parameter tuning, they

could use the default parameter settings that can perform generally well, but there would

be large improvement if tuning the parameter settings carefully. On the contrary, if d3

is small, this method is too sensitive to the model parameters, and a tiny change to its

parameter settings could cause a significantly bad effect on its performance. Accordingly,

we do not recommend to use this method for SEE even if it could achieve a fairly good

performance in its best parameter settings.

6.3 Experimental Result and Analyses

This section aims at answering RQ4 of the thesis by tackling the three sub-questions

outlined in section 6.1 using the analytical methodology presented in section 6.2.

6.3.1 Sensitivity of Average Performance Across Time Steps

This section aims at answering RQ4.1: Given an SEE method, how sensitive is an SEE

method to its parameter settings in terms of average performance across time steps? We

will discuss the SEE methods individually in the following subsections.

MLP and Bagging+MLP

Table 6.2 shows the average MAE across time steps of MLP and Bagging+MLP in their

best, default, and worst parameter settings, together with the effect size of performance

difference between these parameter settings. Tables 6.2(a) and 6.2(b) show that the

performance of the worst parameter settings of MLP and Bagging+MLP are so inferior

138

that most of their STDs across time steps are infinite, making it impossible to compute the

effect size using pooled STDs. To cater this issue, the performance in the best parameter

setting is taken as the control group, and the effect size of a certain parameter setting is

calculated against this control group.

We can see from tables 6.2(a) and 6.2(b) that MLP and Bagging+MLP are extremely

sensitive to parameter settings, since the magnitudes of average performance difference

between the best and the worst parameter settings are huge. Such supposition can be

confirmed by tables 6.2(c) and 6.2(d), where the effect size between the best and the worst

performance is extremely large in all investigated data sets. Even worse, our investigation

found that the performance of MLP and Bagging+MLP could be sensitive to the starting

points of the training algorithms for MLP, which may be a possible reason for causing

extremely large MAEs and infinite STDs of the worst performance.

Nevertheless, MLP and Bagging+MLP in the best and default parameter settings can

achieve fairly good performance, being competitive to other SEE methods in tables 6.3(a),

6.3(b) and 6.4. Though the performance in the default parameter settings are usually

rather worse than the best ones, they are acceptable for the practical usage. As their

STDs across time steps are all finite (see tables 6.2(a) and 6.2(b)), the default and the

best parameter settings may not be sensitive to the starting points.

Further investigation reveals that the best parameter settings of MLP always have the

simplest model structures where each layer has only one node, and the best parameter

settings of Bagging+MLP always have the simplest base learners. It is reasonable as small

training set of SEE may not be adequate to construct complicate network structures.

Overall, MLP and Bagging+MLP can perform fairly well given proper parameter set-

tings. But the performance is very sensitive to the parameter choices and even to the

starting point of the learning algorithms. This can potentially explains the contradic-

tory conclusions of SEE literature on MLP or Bagging+MLP [49, 136, 48]. In practice,

139

Table 6.2: Average performance and effect size across time steps for MLP and Bagging+MLP.
STD is the standard deviation across time steps in terms of MAE. Medium/Large effect size is
highlighted in yellow/red (light/dark grey).

(a) Performance of MLP.
MAE across time stepsKitchenham Maxwell SingleISBSG

Best PS MAE 2046.35 5358.02 2754.78
STD 2868.96 1979.71 1006.01

Default PS MAE 2474.78 7893.26 3682.47
STD 2846.06 3629.54 1254.03

Worst PS MAE 7.42E+138 1.19E+155 1.07E+153
STD 4.71E+140 Inf Inf

(b) Performance of Bagging+MLP.
MAE across time stepsKitchenham Maxwell SingleISBSG

Best PS MAE 1946.18 5089.75 2705.77
STD 2883.74 1918.31 790.20

Default PS MAE 2188.81 5932.99 3025.83
STD 2892.06 2262.39 860.47

Worst PS MAE 9.26E+151 1.33E+153 4.52E+153
STD Inf Inf Inf

(c) Effect size of MLP with the best parameter
settings as the control.

Effect Size Kitchenham Maxwell SingleISBSG
best vs. worst 2.5863E+135 6.011E+151 1.0636E+150

best vs. default 0.149 1.281 0.922

(d) Effect size of Bagging+MLP with the best
parameter setting as the control.

Effect Size Kitchenham Maxwell SingleISBSG
best vs. worst 3.211E+148 6.933E+149 5.720E+150

best vs. default 0.084 0.440 0.405

Table 6.3: Average performance and effect size across time steps for RT and Bagging+RT.
STD is the standard deviation across time steps in terms of MAE. Medium/Large effect size is
highlighted in yellow/red (light/dark grey).

(a) Performance of RT
MAE across time stepsKitchenhamMaxwellSingleISBSG

Best PS MAE 2249.14 5629.51 2751.86
STD 2928.71 2426.86 852.77

Default PS MAE 2618.38 5930.50 3144.56
STD 2899.82 2611.51 1016.74

Worst PS MAE 2618.96 6429.93 3621.96
STD 2935.13 2725.38 1356.32

(b) Performance of Bagging+RT
MAE across time stepsKitchenhamMaxwellSingleISBSG

Best PS MAE 2055.24 5110.56 2814.39
STD 2908.12 2606.10 941.08

Default PS MAE 2209.14 5260.25 2915.74
STD 2926.48 2572.87 986.80

Worst PS MAE 2634.56 6230.56 3356.18
STD 2926.55 2327.33 665.64

(c) Effect size of RT using pooled STD.
Effect Size KitchenhamMaxwellSingleISBSG

d1 (best vs. worst) 0.126 0.310 0.768
d2 (best vs. default) 0.127 0.119 0.419
d3 (default vs worst) - - 0.398

(d) Effect size of Bagging+RT pooled STD.
Effect Size KitchenhamMaxwellSingleISBSG

d1 (best vs. worst) 0.199 0.453 0.665
d2 (best vs. default) 0.053 0.058 0.105
d3 (default vs worst) - - -

the practitioners are suggested to use the default parameter settings for MLP and Bag-

ging+MLP that can perform well in general cases, if they have little experience of tuning

parameters or do not have time to do so.

RT and Bagging+RT

Table 6.3 shows the average MAE across time steps and effect size for RT and Bagging+RT

with the best, default, and worst parameter settings. Tables 6.3(c) and 6.3(d) show that

the effect size of the best vs worst parameter settings is small (0.126) and small (0.199) in

140

Kitchenham, small (0.310) and medium (0.453) in Maxwell, and large (0.768) and large

(0.665) in SingleISBSG for RT and Bagging+RT respectively. This suggests that RT and

Bagging+RT is much less sensitive to parameter settings than MLP and Bagging+MLP.

Though RT are a bit sensitive to parameter settings in SingleISBSG, the effect size

with pooled STD between the best and the default, and between the default and the

worst parameter settings are medium (0.419) and medium (0.398) respectively, which

means that the default parameter settings can achieve relatively good performance. The

performance improvement can be expected if the parameter settings are tuned carefully.

For Bagging+RT, the effect size between the best and the default parameter settings in

SingleISBSG is insignificant (0.105), indicating that the performance difference between

the best and the default parameter settings is quite tiny though Bagging+RT is slightly

sensitive in SingleISBSG across all parameter settings.

Overall, RT and Bagging+RT are usually not very sensitive to parameter settings

for SEE, and thus it is a good option to simply use the default parameter settings if

tuning parameters is not affordable. But, we still suggest to tune the parameters in order

to achieve better performance. Comparison with other SEE methods such as MLP and

Bagging+MLP, the performance of RT and Bagging+RT in the worst parameter settings

is not so much worse than the best ones. Therefore, blind parameter tuning will not cause

severe problem for RT and Bagging+RT.

K-NN

Table 6.4 lists the average MAE across time steps for k-NN with their best, default

and worst parameter settings. As shown in table 6.4(b), k-NN is not very sensitive to

parameter choices in SEE.

Furthermore, table 6.4(c) shows that the default parameter setting (k = 1) is always

the worst, and the best performance is usually achieved when k equals to 3 or 5. A possible

reason may arise from the noise of SEE data. On the one hand, the performance of k-NN

141

Table 6.4: Average performance and effect size across time steps and parameter settings for
K-NN. STD is the standard deviation across time steps in terms of MAE. Medium/Large effect
size is highlighted in yellow/red (light/dark grey).

(a) Performance of k-NN.
MAE across time steps Kitchenham Maxwell SingleISBSG

Best PS MAE 1889.67 4642.61 2937.49
STD 2770.78 2574.22 688.85

Default PS MAE 2315.12 5667.09 3394.39
STD 2838.20 2172.91 1562.69

Worst PS MAE 2315.12 5667.09 3394.39
STD 2838.20 2172.91 1562.69

(b) Effect size of k-NN using pooled STD.
Effect Size Kitchenham Maxwell SingleISBSG

best vs. worst 0.152 0.430 0.378
best vs. default 0.152 0.430 0.378
default vs worst - - -

(c) Parameter Settings of k-NN
k Kitchenham Maxwell SingleISBSG

Best PS k=3 k=3 k=5
Defaul PS k=1
Worst PS k=1

0 5 10 15 20 25
1800

1900

2000

2100

2200

2300

2400

k in k−NN

M
A

E

k−NN in Kitchenham

(a) Kitchenham.

0 5 10 15 20 25
4600

4800

5000

5200

5400

5600

5800

k in k−NN

M
A

E

k−NN in Maxwell

(b) Maxwell.

0 5 10 15 20 25
2900

3000

3100

3200

3300

3400

k in k−NN

M
A

E

k−NN in SingleISBSG

(c) SingleISBSG

Figure 6.1: Parameter values of k in kNN

can be strongly affected if only using the nearest neighbour due to the corruption of data

noise. On the other hand, with the increase of k, more neighbours would lessen the impact

of data noise, but more less relevant training examples can involve into predicting, which

is not preferred. Considering the small data set for SEE, three or five (or a bit bigger like

seven) neighbours may be a good choice to avoid both extremes. Figures 6.1(a)∼6.1(c)

further support our conjecture.

Overall, the average performance of k-NN across time steps is not very sensitive to

parameter settings, and 1-NN is not recommended due to its inferior overall performance.

6.3.2 Step-Wise Performance of Best Parameter Settings

Previous section analyses the sensitivity of an SEE method to parameter choices based

on the average performance across all time steps. This section looks into each time step

142

10 20 30 40 50 60
0

0.5

1

1.5

2

2.5

3x 10
4

time step

M
AE

best
worst
dflt

(a) MLP in Maxwell.

10 20 30 40 50 60
0

0.5

1

1.5

2

2.5

3x 10
4

time step

M
A

E

best
worst
dflt

(b) Bagging+MLP in Maxwell.

0 10 20 30 40 50 60
0

2000

4000

6000

8000

10000

12000

time step

M
AE

best
worst
dflt

(c) K-NN in Maxwell.

0 10 20 30 40 50 60
1000

2000

3000

4000

5000

6000

7000

time step

M
A

E

best
worst
dflt

(d) RT in SingleISBSG.

0 10 20 30 40 50 60
1000

2000

3000

4000

5000

6000

7000

time step

M
A

E

best
worst
dflt

(e) Bagging+RT in SingleISBSG.

0 10 20 30 40 50 60
1000

2000

3000

4000

5000

6000

7000

time step

M
A

E

best
worst
dflt

(f) K-NN in SingleISBSG.

Figure 6.2: The performance of SEE methods on each time step with the best, default and worst
parameter settings in terms of MAE. We do not list the performance of the method on all data
sets, since the trends are similar. Note that the performance of the worst parameter settings of
k-NN is overlapped with that of the default.

for answering RQ4.2: Given an SEE method, do the best parameter settings in terms of

the average performance across time steps perform consistently well throughout each time

step in comparison to other parameter settings?

We can see from figure 6.2 that though there are a few time steps where the default

or even the worst parameter settings are superior to the best ones, usually the best

parameter settings can achieve better performance than the others. Take figure 6.2(d) as

an example, the performance in the worst parameter settings outperforms the one in the

best and default at the time steps between ten and fifteen, however, the best parameter

settings are superior to the default and the worst in the majority of the time steps.

The occasional inferiority of the best parameter settings allow for further performance

improvement throughout each time step by providing adaptive parameter tuning, which

would be a worthwhile future work.

For k-NN, comparing figures 6.2(c) and 6.2(f) with 6.2(a), 6.2(b), 6.2(d), and 6.2(e),

we can see that the frequency that the worst parameter settings are superior to the best

143

ones is higher than other methods. This suggests that the best parameter settings of

k-NN are more dependent on the moment in time. In other words, k-NN is less stable in

terms of the consistency of the best parameter settings throughout time steps.

For MLP and Bagging+MLP, we can see from figures 6.2(a) and 6.2(b) that the

performance with the worst parameter settings are competitive with the best and the

default ones at most time steps. Only at a few time steps, the worst parameter settings

perform extremely bad: their performance cannot even be shown in the figures for proper

visualization of the other parts.

Overall, the performance of the best parameter settings outperform the default and

the worst ones at most time steps.

6.3.3 How Could Ensemble Help?

This section aims at answering RQ4.3: Could Bagging help to lessen the base learners’

sensitivity to parameter settings? We will investigating this issue from two perspectives:

(a) Could Bagging help to lessen the base learners’ sensitivity to the parameter settings

in terms of its average performance across time steps? and (b) Could Bagging also help

with the performance at each time step?

Comparing tables 6.2(c) and 6.2(d), we can see that the effect size between the best

and the default parameter settings for Bagging+MLP is smaller than those for MLP in all

investigated data sets. Specifically, the effect size decrease from 0.149 (Kitchenham), 1.281

(Maxwell), and 0.922 (SingleISBSG) for MLP to 0.084 (Kitchenham), 0.440 (Maxwell),

and 0.405 (SingleISBSG) for Bagging+MLP. It means that the performance in the default

parameter settings of Bagging+MLP is closer to the best ones than that of MLP. We can

also see that the default and the best curves are much closer in figure 6.2(b) than those

in figure 6.2(a), meaning that Bagging can help shorten the performance difference in

different parameter settings in terms of each time step.

144

Comparing tables 6.3(c) and 6.3(d), we can see that the effect size between the best

and the default parameter settings for Bagging+RT is smaller than that for RT, suggesting

that the performance in the default parameter settings for Bagging+RT is closer to the

best ones than that for RT. We can also see from figures 6.2(d) and 6.2(e) that Bagging

helps drag the curves of the default parameter settings closer to the best one throughout

time steps, meaning that Bagging helps shorten the difference in terms of each time step.

Overall, our experimental results show that combining SEE methods into Bagging can

help the performance of the default parameters get closer to the best ones.

6.4 Summary and Discussion

This chapter proposes an analysis methodology and conducts systematic experiments to

investigate to what extent parameter settings affect the performance of SEE methods and

whether different SEE methods are more/less sensitive to their parameter settings.

The model sensitivity problem has been tackled by answering the three sub-research

questions outlined in section 6.1 as follows.

• RQ4.1: How sensitive is an SEE method to its parameter settings in terms of average

performance across time steps? Different SEE methods have different sensitivity to the

parameter settings. Specifically, RT and Bagging+RT are not very sensitive to parameter

settings in terms of average performance across time steps, but parameter tuning is rec-

ommended for gaining better performance. Though MLP and Bagging+MLP can achieve

good performance, they are extremely sensitive to their parameter settings, and even to

the starting points of their learning algorithms. K-NN is not very sensitive to parameter

settings, and 1-NN is not recommended for SEE due to its inferior performance.

• RQ4.2: Does the best parameter setting of an SEE method in terms of average per-

formance across time steps perform consistently well throughout time steps in comparison

to other parameter settings? The best parameter settings can commonly achieve better

145

performance than the default and the worst ones, though there are a few time steps where

the default or even the worst parameter settings outperform the best ones. In particular,

k-NN is less stable in terms of the consistency of the best parameter settings throughout

time steps, as it happens more frequently that the best parameter settings perform the

worst in some time steps.

• RQ4.3: Could Bagging help to lessen the base learners’ sensitivity to parameter

settings? Incorporating SEE methods into Bagging ensemble can help make the perfor-

mance of the default parameter settings closer to the best ones. Practically, it would be

an acceptable choice to combine MLP and RT into Bagging with their default parameter

settings, when there is no time to perform parameter tuning.

In summary, sensitivity to parameter settings should be considered as a criterion for

evaluating SEE methods. A good SEE method should not only be the one that is able to

achieve superior prediction performance, but also be the one that is either less sensitive

to the parameter settings or easy to make good parameter choices.

Future work includes sensitivity investigation of other state-of-the-art SEE methods

in more data sets with chronological ordering. Specifically, the adaptation of our SEE

methods proposed in chapters 3, 4, and 5 to the online scenario as well their sensitivity

to parameter settings in the online scenario is worthwhile for future research.

146

CHAPTER 7

Conclusions and Future Work

This chapter summarizes the conclusions of the thesis and presents the directions of future

work. The thesis focuses on tackling the scarcity and uncertainty issues of SEE and

studying the sensitivity to parameter settings of SEE methods. The main contributions

are the answers to RQ1 to RQ4 outlined in section 1.1.

7.1 Conclusions

We summarize the conclusions in chapters 3, 4, 5, and 6 as follows.

7.1.1 Synthetic Data Generation for Small Data Problem

SEE usually suffers from data scarcity problem due to the expensive or long process

of data collection [106, 107, 116]. SEE literature has frequently tackled this problem

by developing sophisticated SEE methods or collecting as many completed projects as

possible. An alternative and much cheaper way is to augment the training set with the

synthetic software projects.

Chapter 3 proposes a synthetic data generator to tackle the data scarcity problem of

SEE, answering the first research question of the thesis:

147

RQ1. Can we generate synthetic software projects to enlarge the training set

size for obtaining better prediction performance? If so, how?

Our method produces synthetic projects by slightly displacing training examples, with

each synthetic project associated to one training example that is chosen randomly. The

synthetic projects are then added to the training set and used to construct SEE models.

The effectiveness of our synthetic project generator has been validated by answering

the sub-research questions outlined in section 3.1 as follows.

• RQ1.1: Given an SEE method, can our synthetic data generator help improve pre-

diction performance over the baseline that does not use synthetic projects? When? Could

it be detrimental? Experimental results show that our synthetic projects usually have

positive effect on and are rarely detrimental to the performance of SEE methods. They

are particularly helpful for small and medium data set sizes for MLR and ATLM, mod-

erately helpful for RVM and RT, and not very helpful for k-NN and SVR. Nevertheless,

they are hardly detrimental to the baseline performance.

• RQ1.2: Given an SEE method, if our synthetic projects are helpful for prediction

performance, why are they helpful? If they are detrimental, why are they detrimental?

The effectiveness of our synthetic projects is mainly due to the data augmentation and

the robustness enhancement in the areas that data noise may injure the quality of SEE

model construction. Different SEE methods have different improvement magnitude which

is mainly affected by their locality and globality properties. Our synthetic projects are

rarely detrimental to the baseline performance that does not use synthetic projects.

• RQ1.3: How well does our data generator perform compared to other data generators

in SEE literature? Experimental results show that our synthetic project generator is

significantly superior to or has no significant difference from Kamei et al’s [93] that is the

only competitor in SEE literature. Their data generator [93] probably brings no significant

improvement to the baseline performance that does not use synthetic projects.

148

This thesis also studies the impact of training set size on prediction performance based

on the holdout evaluation. Experimental results show SEE methods usually achieve better

performance with a larger training set; the magnitude of superiority decreases on the

increase of the training size. This is a by-product of answering RQ1.

7.1.2 Uncertain Effort Estimation for Noisy Data Problem

Uncertain effort estimation tackles the data noise problem of SEE and supports more infor-

mative decision making by accessing prediction risks. PIs with CLs are recommended by

software estimation experts as a more reasonable representation of reality [103]. However,

most SEE methods only produce point prediction. Chapters 4 and 5 introduce/propose

uncertain effort estimators, answering RQ2 and RQ3 of the thesis.

Chapter 4 introduces RVM to provide PIs with CLs, answering the second research

question of the thesis:

RQ2. Is there any ML approach that can provide uncertain effort estimation?

How well can it perform in terms of point and uncertain prediction?

The potential of RVM in the context of SEE has been validated by answering the sub-

research questions outlined in section 4.1 as follows.

• RQ2.1: How well does RVM perform compared to other SEE methods when used as

a point estimator? Experimental results show that RVM is very competitive compared

to other SEE methods, being usually ranked top two out of seven methods across 11 data

sets in terms of MAE. Friedman tests detect its significant superiority to MLP and show

similar performance with other SEE methods. Thus, RVM is a promising SEE method

and worthwhile for further investigation.

• RQ2.2: How to provide PIs with CLs based on RVM? How well can the PIs with CLs

derived from RVM perform? We provide the way of deriving PIs with CLs in section 4.2

and validate the PIs with two specific cases CL0.6827 and CL0.9545. Experimental results

149

show that the PIs can often achieve relatively good hit rate, but they can be too wide to

be informative. Therefore, further studies should focus on providing better PIs with CLs.

Chapter 5 ensembles a set of RVMs into a unified uncertain effort estimator, answering

the third research question of the thesis:

RQ3. Can we improve the PIs of RVM? How? How well does this method

perform compared to state-of-the-art point/uncertain methods?

The proposed SynB-RVM adopts Bootstrap resampling to produce multiple RVMs based

on adapted Bootstrap training bags whose replicated training examples are replaced with

their synthetic counterparts. The constructed RVMs are then incorporated into a unified

uncertain estimator, based on which PIs with CLs are derived.

The performance of SynB-RVM has been validated by answering the three sub-research

questions outlined in section 5.1 as follows.

• RQ3.1: When used as a point estimator, how well can SynB-RVM perform com-

pared with other SEE methods? Experimental results show that SynB-RVM can either

significantly outperform or have similar point prediction performance compared to other

SEE methods. Specifically, SynB-RVM significantly outperforms RVM (EmpRVM), Bt-

strpRVM (Bagging+RVM), k-NN, SVR, MLP, RT, Bagging+RT, and Bagging+SVR with

respect to at least one performance metric; it performs similarly to ATLM (EmpATLM)

and BtstrpATLM (Bagging+ATLM).

• RQ3.2. When used as an uncertain estimator, can SynB-RVM’s PIs achieve adequate

hit rate with narrower and more informative PIs? In terms of hit rate, SynB-RVM usually

has significantly better performance than other SEE methods except for RVM. In terms

of relative width, SynB-RVM usually produces significantly better PIs with CLs than

those from RVM and BtstrpRVM; it performs similarly to EmpRVM, BtstrATLM, and

EmpATLM. Nevertheless, SynB-RVM has performance superiority with medium/large

effect size over EmpRVM, BtstrATLM, and EmpATLM in most data sets.

150

• RQ3.3. Which components of SynB-RVM contribute to the point and uncertain

prediction performance improvement? Analytical results show that the three versions of

SynB-RVM perform similarly in terms of point and uncertain prediction. SynB-RVM has

two key components: synthetic displacement and Bootstrap pruning. Analytical results

show the effectiveness of synthetic displacement and the two components as a whole in

improving the performance of RVM in terms of both point and uncertain prediction. They

also suggest that synthetic displacement has a more significant impact than Bootstrap

pruning on point and uncertain prediction.

Besides the main contributions in proposing and validating a novel uncertain estimator,

we are the first to provide a thorough experimental comparison on uncertain SEE methods.

Due to the encouraging results, SynB-RVM is likely to help project managers to make

better informed decisions by accessing the project management risks.

7.1.3 Statistical Analysis for Model Sensitivity Problem

Chapter 6 investigates the sensitivity to parameter settings of SEE methods in the online

scenario, answering the fourth research question of the thesis:

RQ4. To what extent do parameter settings affect the performance of SEE

methods, and should we pay attention to their parameter tuning?

We propose an analysis methodology based on Cohen’s d effect size [164] to investigate

to what extent parameter settings affect the performance of SEE methods.

The model sensitivity problem has been tackled by answering the three sub-research

questions outlined in section 6.1 as follows.

• RQ4.1: How sensitive is an SEE method to its parameter settings in terms of average

performance across time steps? Different SEE methods have different sensitivity to the

parameter settings. Specifically, RT and Bagging+RT are not very sensitive to parameter

settings in terms of average performance across time steps, but parameter tuning is rec-

ommended for gaining better performance. Though MLP and Bagging+MLP can achieve

151

good performance, they are extremely sensitive to their parameter settings, and even to

the starting points of their learning algorithms. K-NN is not very sensitive to parameter

settings, and 1-NN is not recommended for SEE due to its inferior performance.

• RQ4.2: Does the best parameter setting of an SEE method in terms of average per-

formance across time steps perform consistently well throughout time steps in comparison

to other parameter settings? The best parameter settings can commonly achieve better

performance than the default and the worst ones, though there are a few time steps where

the default or even the worst parameter settings outperform the best ones. In particular,

k-NN is less stable in terms of the consistency of the best parameter settings throughout

time steps, as it happens more frequently that the best parameter settings perform the

worst in some time steps.

• RQ4.3: Could Bagging help to lessen the base learners’ sensitivity to parameter

settings? Incorporating SEE methods into Bagging ensemble can help make the perfor-

mance of the default parameter settings closer to the best ones. Practically, it would be

an acceptable choice to combine MLP and RT into Bagging with their default parameter

settings, when there is no time to perform parameter tuning.

7.2 Future Work

This section presents potential research directions that may further develop our proposed

SEE methods in the thesis.

7.2.1 Data Generator with Guided Choice of Training Examples

In chapter 3, we have randomly chosen the training examples based on which our synthetic

projects are generated. One reason for the random choice is to allow the data to speak

for itself. For instance, the training examples in crowded regions that are less likely to

contain large variations are more likely to be chosen, which is preferable.

152

Other strategy that emphasizes customers’ preferences or encodes expert knowledge

into the choice of the training examples can potentially further improve the prediction

performance, leading to the future research question:

RQ1*: Is there other strategy for choosing training examples based on which

synthetic projects are generated? Can this strategy further improve the

effectiveness of our synthetic projects?

This study will give us a better understanding on the effect of the choice of training

examples. It may also further enhance the effectiveness of our synthetic projects.

7.2.2 Synthetic Ordinal/Categorical Feature Modelling

In chapter 3, the generation of synthetic ordinal (categorical) features are modelled by

binomial (discrete uniform) distributions. This modelling makes sense due to the effective-

ness of our synthetic projects. However, as discussed in section 3.2.3, our synthetic feature

modelling may not fit reality perfectly. For instance, a newly developed software project

may be more likely to be enhanced rather than re-developed; employees with normal ex-

pertise would be more likely to evolve with high rather than low expertise. Therefore,

non-symmetric distributions would be better to model the categorical (ordinal) features,

leading to the future research question:

RQ2*: Can we design a non-symmetric discrete distribution for being more

suitable for categorical (ordinal) feature modelling? Can this further im-

prove the effectiveness of our synthetic projects?

This study will potentially tackle the data scarcity problem better. To this end, expert

knowledge on the distribution of categorical and ordinal features is required.

7.2.3 Synthetic Effort Modelling

In section 3.2.2, synthetic effort value is determined by numerical features only. Assigning

synthetic effort based on ordinal/categorical features is challenging, as it requires expert

153

knowledge or data analysis with a large amount of training examples. This is potentially

a harder problem than SEE itself. Moreover, changing some ordinal/categorical features

would increase the effort, whereas changing some others would decrease it. Altogether,

this would cause small variation in the effort.

Considering ordinal/categorical features for synthetic effort assignment may further

improve the effectiveness of our synthetic projects, leading to the future research question:

RQ3*: How can we encode ordinal and categorical features into synthetic effort

generation? Which ordinal or categorical features are more predictive?

Can this strategy enhance the effectiveness of our synthetic projects?

This study will potentially improve the prediction performance. Expert knowledge on the

predictive ability of categorical/ordinal features is required.

7.2.4 Effort Noise Modelling and Non-Symmetric PIs

In chapters 4 and 5, effort noise is modelled by a Gaussian distribution, which is reasonable

according to the central limit theorem [145]. However, the Gaussian noise assumption

disregards the fact that effort has to be positive (see the last subsection of section 5.7.2).

More studies can focus on non-symmetric right-skewed distributive modellings for effort

noise and the corresponding non-symmetric PIs, leading to the future research question:

RQ4*: Can we provide a suitable non-symmetric modelling for effort noise?

How can the PIs with CLs be derived? What is the performance of this

noise modelling compared with RVM and SynB-RVM in terms of point

and uncertain prediction performance?

This study will potentially enhance uncertain prediction performance of SynB-RVM by

providing non-symmetric PIs with CLs. Possible examples for effort noise modelling

include right-skewed Gaussian distribution [14] and Gamma distribution [80]. However,

non-Gaussian noise modelling will destroy the analytical solution of RVM and SynB-RVM,

causing considerably complicated deductions.

154

7.2.5 SynB-RVM Variants

In section 5.7.2, we discuss that SynB-RVM can be encoded with any base leaner that

can produce probabilistic effort estimation. Specifically, the base learner can be a single

method like RVM that provides probabilistic prediction itself, an ensemble of methods

like BtstrpRVM that provides probabilistic prediction as a group, or even a cascade of

ensembles. In this sense, our approach can be generalized as Synthetic Bootstrap ensemble

of Probabilistic Predictors, leading to the future research question:

RQ5*: How can we encode other probabilistic SEE methods into our frame-

work? Can they outperform SynB-RVM in terms of uncertain prediction?

This study will potentially incorporate the profits of other uncertain methods and improve

uncertain prediction performance. But we need to consider the extra computational load.

7.2.6 Adapting Our Proposed Methods to Online Scenario

Our methods proposed in chapters 3, 4 and 5 are in the offline scenario that is the most

typical setting in the SEE community. The offline scenario is suitable for the companies

that have accumulated adequate training examples, but it is difficult especially for the

start-ups that have few or even no completed software projects. Therefore, adapting our

proposed methods to the online scenario will be a worthwhile future work as

RQ6*: How to adapt our methods in chapters 3, 4 and 5 to the online scenario?

This study will potentially enhance the practical usage of our methods.

7.2.7 Model Sensitivity of Our Methods in Online Scenario

In chapters 3, 4 and 5, we propose/introduce three methods to handle small and noisy

data problem of SEE in the offline scenario. We have investigated reasonable amount of

model parameters of our methods and their competitors, and performed fair comparisons

among these SEE methods based on their best parameter settings.

155

Nevertheless, it would be worthwhile to further investigate the model sensitivity of

our proposed methods in the online scenario using the analysis methodology proposed in

chapter 6, leading to the future research question:

RQ7*: To what extent the parameter settings of our methods in chapters 3,

4, and 5 affect the prediction performance in the online scenario?

This study will provide a more thorough understanding of our methods in terms of the

sensitivity to parameter settings, prompting their practical usage.

156

APPENDIX A

Point Effort Estimation Methods

This appendix discusses point effort estimation methods, which are related to the thesis as
background knowledge and are used in the experimental comparisons against our proposed
methods in this thesis.

Consider a training set of N software projects

D = {(xn, yn)}Nn=1, (A.1)

where xn = [x1, · · · , xD] ∈ RD is the nth training data consisting of D features, and
yn ∈ R1 is the actual effort for developing this project. As mentioned in section 1.2.1,
categorical features are converted into real values, and thus can be represented as in R.
Align all training examples in line and form the matrix of training examples as

X = [x1, · · · ,xN]T ∈ RN×D. (A.2)

The matrix of training examples contains all training information that can be used to
build an SEE method.

A.1 Linear Regression
Linear regression models are popularly used in the context of SEE, and is usually shown
to perform well after appropriate data transformation [188, 99]. As formulated in sec-
tion 1.2.1, SEE is a regression problem usually with more than one input feature, we
therefore consider multivariate linear regression in the thesis, each variate corresponding
to one effort feature.

A.1.1 Multivariate Linear Regression (MLR)
Multivariate Linear Regression (MLR) assumes a linear relationship between the input
features and output effort as

y = θ0 + θ1x1 + · · · θdxd + · · ·+ θDxD (A.3)

157

where xd is the dth feature of SEE data, d ∈ {1, · · · , D}, and θ = [θ0, · · · , θD]T ∈ RD+1

are the model parameters.
Conventionally, we minimize the loss function L to determine the optimal model

parameters θ∗ by least square estimation [144] as

L = ∑N
n=1(yn − (θ0 + θ1x

(n)
1 + · · ·+ θDx

(N)
D))2

= ∑N
n=1(yn − θT · x(n))2 = (y−Xθ)T (y−Xθ),

(A.4)

where x(n) = [1, x(n)
1 , · · · , x(n)

D]T ∈ R(D+1), y = [y1, · · · , yn]T ∈ RN , and X = [x(1), · · · ,x(n)]T ∈
Rn×(D+1). To get the optimal θ∗ = [θ∗0 · · · , θ∗D], we need to compute the differentiation
with the equations as

∂L

θ0
= ∂L

θ1
= · · · = ∂L

θD
= 0, (A.5)

where we have D+ 1 equations, corresponding to the D+ 1 unknown model parameters.
In matrix-vector form, the set of equations can be represented as

0 = ∂L

∂θ
= 2XT (Xθ − y). (A.6)

Deriving the matrix equation, we have the analytical solution of the MLR model as

θ∗ = (XTX)−1XTy. (A.7)

Given a testing example x with an unknown effort value y, the prediction process
proceeds as

ŷ = (θ∗)T
[

1
x

]
(A.8)

where we hope for small error of |y − ŷ|.
MLR has been used with mixed evaluation results in SEE: some studies found that

MLR was the most accurate model in their experimental studies [49, 35, 124]; some found
that methods such as artificial neural networks or analogy-based approaches outperformed
MLR [48, 43]; some others argued that MLR with appropriate data transformations such
as logarithm of numerical features can produce suitable and more accurate prediction
performance [99]. In the thesis, MLR is taken as a proper baseline for evaluating the
point prediction performance of SEE methods.

A.1.2 Automatically Transformed Linear Model (ATLM)
Naively applying MLR may not be adequate since SEE data is often skewed, and appro-
priate transformations of the inputs and/or output are often required to form a proper
MLR [99]. To this end, Whigham et al. [188] amended classical MLR by certain data
preprocessing, namely Automatically Transformed Linear Model (ATLM).

ATLM is a linear model which assumes a linear relationship between the input features
and output efforts after appropriate automatic transformations upon them. First, ATLM

158

assesses the suitability of logarithm and square-root transformations of each effort variable
(inputs and output) based on the underlying distribution discovered from the training
data. For each effort variable, the transformation (logarithm, square-root and none) that
results in the least skewed data is applied to construct the final linear model. Skewness
is measured by the b1 metric proposed in [79]. ATLM can automatically decide when to
apply what transformation and thus may be more adequate for SEE than MLR. Then,
the training of ATLM would be proceeded as a normal MLR with the transformed data
samples for training and prediction. In particular, MLR is a special case of ATLM when
no transformations are applied.

ATLM has been shown to be a suitable baseline for comparison of SEE methods [188].
It has been shown to be comparable or superior to other SEE methods such as Pareto
ensembles of artificial neural networks [135] or the hybrid ABE-PSO [95]. In the thesis,
we use the R codes provided by the authors for the implementation of ATLM, and use
R.matlab package [22] to configure the R implementation into the MATLAB framework.

A.1.3 Potential Issue of the Linear Models
As discussed in chapters 3 and 5, one potential issue of MLR/ATLM is that it may suffer
numerical problems while giving effort estimates for some testing examples. For instance,
it may produce an extremely large or even infinite effort estimate for a testing project,
which is obviously impractical.

This erratic effort estimation may arise from outer-interpolating training points to
predict a testing project that is isolated and very distant from any of the training projects,
thus causing a very erratic prediction (e.g. very large estimated effort) and large error.
The situation could be even worse if, e.g., the erratically large prediction takes place in
the logarithmic effort space when using ATLM, which would be inverse-transformed back
to the original effort space causing an even larger or infinite effort prediction.

The unstable prediction performance of MLR/ATLM may also arise from the scarce
data problem of SEE, where MLR/ATLM may suffer from ill-conditioned problem when
doing matrix inversion in the training process, meaning that a small error in the data can
cause much larger errors in the solution. Even worse, ATLM may suffer incorrect statistic
estimation in its automatic transformation mechanism for insufficient training examples.

To circumvent this numerical issue, we set up a threshold for the predicted efforts
of MLR/ATLM at the value of 106 in the thesis. Those prediction that surpass this
threshold will not take part in their performance evaluation. The assigned threshold is
reasonable because the actual effort values of the investigated data sets are much smaller
than it. This treatment is actually giving advantage to linear models in the performance
comparison. Certain performance metrics such as mean logarithm absolute error can also
alleviate or circumvent this numerical problem.

A.2 Relevance Vector Machine (RVM)
In the thesis, we briefly introduce this learning machine in the context of SEE, and
deliberately omit details and derivations for easy understanding. More details can be
found in chapter 7.2 of [25] and Tipping’s work [177].

159

Relevance Vector Machine (RVM) [25, 177, 59] is a generalised linear model in terms
of model parameters (not in terms of input features), and can be represented for output
y given a project vector x ∈ RD as

y = θTφ(x) + ε, (A.9)

where θ = [θ0, θ1, · · · , θN]T ∈ RN+1 are model parameters, N is the number of training
examples, ε is the uncertain information originated from actual effort collection, and
φ(·) = [φ0(·), · · · , φN(·)] are known as basis functions that give linear model substantial
flexibility for modelling nonlinear relation between x and y. In the case of RVM, each
basis function associates with a separate training project xn and measures the distance
of this training example to the testing project x. There are several choices for the basis
function. In the thesis, we adopt the non-normalized Gaussian basis function:

φn(x) =
 e−

(x−xn)2

2c2 , n > 0
1, n = 0

(A.10)

where xn is the nth training example, and c is the tuning parameter that controls their
spatial scale and can be determined using cross-validation method [25]. This basis function
is chosen for its locality character for SEE data, which can be beneficial to SEE [136].

It is noteworthy that RVM’s training procedure involves the calculation of the inverse
of the kernel matrix Φ = [1,φ(x1), · · · ,φ(xN)]T ∈ R(N+1)×N , and thus requires a training
data set composed of different training examples. This is to avoid the invertibility problem
of the data matrix when identical columns/rows exist [59, 177].

Following the Bayesian framework, RVM first introduces a zero-mean Gaussian prior
over model parameters as p(θ|α) = ∏N

n=0N (θn|0, α−1
n), where α = [α0, α1, · · · , αN]T is

a vector of N + 1 hyperparameters. The prior is a belief on the SEE model before any
observation and evidence is taken into account. The detailed shape of prior is governed
by the hyperparameters α, with their most probable values iteratively estimated from
the training examples D . After the iterative procedure finishes, the training examples
corresponding to non-zero model parameters are called relevance vectors in line with the
support vectors of Support Vector Machine (SVM), which is a popular learning machine
mainly designed for classification problem [181, 180, 182]. RVM can be considered as a
Bayesian approach to SVM in the context of regression, which can provide a probabilistic
prediction instead of a point estimate for a testing project.

Then, we can obtain the posterior of model parameters p(θ|D), being a conditional
probability assigned after the training examples D are taken into account. The posterior
of the model parameters is a Gaussian distribution proportional to the product of the
Gaussian prior p(θ) and the Gaussian likelihood of all training examples p(D |θ), which
is calculated according to Bayes’ Rule:

p(θ|D) = p(θ)p(D |θ)
p(D) . (A.11)

160

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Effort Value (person-hour)

0

0.005

0.01

0.015

0.02

P
re

di
ct

io
n

P
D

F

Figure A.1: Probabilistic effort estimation from RVM for a software project. The predicted
effort values are Gaussian distributed with the most likely value at 1,000 person hour.

Finally, we can have a probabilistic (Gaussian) effort estimation for a testing project
as shown in Fig. A.1. A point estimate can be easily obtained by being assigned to the
mean of the Gaussian distribution (e.g. 1,000 person-hour in Fig. A.1) for being the most
likely effort value.

RVM explicitly encodes the effort noise ε into its modelling, which is assumed to be
Gaussian distributed as

ε ∼ N (0, σ2), (A.12)
where σ2 can be determined automatically during the training process. As a result, the
probabilistic effort estimation arises from the Gaussian assumption of the effort noise.
It is noteworthy that Gaussian effort estimation relates but does not equal to Gaussian
effort noise. In Bayesian terms, the assumption of Gaussian effort noise provides a prior
knowledge for a project effort before any training sample is observed, which is the case that
project effort follows σ2-Gaussian distribution with its mean value defined by Eq. (A.9);
the Gaussian prediction of a new project is a posterior estimate after training examples
are observed and used to train the model.

Ideally, the distribution of the effort noise should be proposed by carefully investi-
gating the residues between the real cost effort values and the collected effort values of
the training examples. But this is usually impossible since the real required effort values
exempted from noise are not known in reality. Among a set of probability distributions,
Gaussian distribution can often match the actual noise distributions in real-world pro-
cesses reasonably well, and is easy to deal with due to the well-developed mathematical
theory behind it [119]. In the context of SEE, the uncertainty is assumed to originate
from the Gaussian noise assumption on the effort values, which lays its foundation on
central limit theorem [145], stating that the summation of several independent random
processes tends to a normal distribution even if the original variables themselves are not
normally distributed. Considering the errors/noises that generate model uncertainty as
random variables, their overall effect is reasonable to be simulated by Gaussian distribu-
tion. Nevertheless, this assumption still has problem for disregarding the fact that effort
values have to be positive. Better performance may be obtained with a more proper ef-
fort noise assumption, which would, however, result in much more complicated deduction
when training the model of Eq. (A.9).

161

A key characteristic of RVM is that people introduce a separate hyperparameter for
each model parameter θi instead of a single shared hyperparamter as in classical Bayesian
linear regression model [25]. This mechanism results in sparsity, for which a large subset
of model parameters θ will be driven to zero with their corresponding training examples
pruned [59]. This formulation of prior is a type of Automatic Relevance Determination
(ARD) prior [177, 143]. With the mechanism of ARD, RVM can automatically choose
‘relevance’ projects, namely relevance vectors, from training examples, which can capture
the major structure of the training space [177].

A.3 Support Vector Regression (SVR)
Support Vector Regression (SVR), a counterpart of Support Vector Machine (SVM) clas-
sifier [181] for regression problem, is a kernel approach that implements the structural risk
minimization principle for good generalization performance [55]. It is based on a linear
model with respect to model parameters w ∈ RD′ as

f(x) = 〈w,φ(x)〉+ b, (A.13)

where φ is a nonlinear function that maps from the original feature space RD to a higher
dimensional feature space RD′ , and 〈·, ·〉 denotes the inner product.

The model parameters are determined by minimizing the ε-sensitive loss function as

minimize Lw,b,ξ,ξ∗ = 1
2〈w,w〉+ C

∑N
n=1(ξn + ξ∗n)

subject to


(〈w,φ(xn)〉+ b)− yn 6 ε+ ξn
y(n) − (〈w,φ(xn)〉+ b) 6 ε+ ξ∗n
ξn, ξ

∗
n > 0.

(A.14)

where ε > 0 measures the tolerance to the deviation between the estimated and the actual
effort values, slack variable ξn measures the deviation of the estimated effort value of the
nth training example exceeding the actual effort value by more than ε, ξ∗n measures the
deviation dropping below the actual effort value by more than ε, and regularization term
C > 0 measures the trade-off between the flatness of f and the total amount of intolerant
deviations. As illustrated in figure A.2, the ε-sensitive loss function defines an ε-tunnel
around the predicted effort values, where the errors inside the tunnel are set to be zero
but the errors outside the tunnel are measured by variables ξ and ξ∗. Parameter ε and C
need to be determined by cross validation method.

The learning process of SVR involves the use of Lagrangian multipliers, which only rely
on dot products between {φ(xn)}. Thus, kernel theory can be used to avoid computing
the transformation φ(x) explicitly:

k(xm,xn) = 〈φ(xm),φ(xn)〉, (A.15)

where the input data are mapped via a kernel function k(·, ·). The details of the learning
algorithm can be found in [167], and its implementation is based on Sequential Minimal
Optimization (SMO) algorithm [62].

162

Figure A.2: SVR’s model parameters [55]. The ε-sensitive loss function in Eq. (A.14) defines
an ε-tunnel around the predicted effort values, where the errors inside the tunnel are zero and
the errors outside the tunnel are measured by variables ξ and ξ∗.

There are several choices of kernels such as linear, Gaussian, polynomial, and Sigmoid
kernels. Selecting a particular kernel and kernel parameters is usually very important and
should be based on domain knowledge. In the thesis, we use linear kernel for being shown
to be a better choice for SEE [146]:

k(xi,xj) = 〈xi,xj〉. (A.16)

SVR is designed for small data problems [55], which seems suitable to SEE. However,
SVR has not been popularly used in the community of SEE partially because of the
contradictory conclusions drawn in previous studies [160, 146, 7]. Some studies claimed
its superior performance in SEE [146, 160, 41]. For instance, experimental results in
[146] showed that SVR with linear kernel significantly outperformed liner regression and
artificial neural networks based on a data set of software projects from NASA. On the
contrary, some studies claimed similar or inferior performance of SVR compared with
artificial neural networks or MLR [7].

A.4 Analogy-Based Estimation (ABE)
Analogy-Based Estimation (ABE), also called Case-Based Reasoning (CBR), is a popular
SEE approach for its simplicity and intuitive interpretation that mimics human instinctive
decision making [123, 165, 122, 9, 114, 87]. It is based on the assumption that software
projects that are similar in the feature space would have similar effort values [114, 94].

The typical procedures of ABE methods comprise a search for the similar projects
that have been completed: (1) compute the distances between the testing example and
the training examples (i.e. the completed software projects) based on the input features
and some distance metric; (2) sort the distances and extract the k nearest neighbours
of the testing example; (3) the mean/median effort of the chosen completed projects is
returned as the effort estimate. For this reason, ABE is usually referred as k-Nearest
Neighbours (k-NN) in the context of ML.

Distance measures the closeness or the difference between two software projects in the
feature space, and Euclidean distance is the most commonly used for being suitable to

163

continuous features such as software size and duration of a project [165, 122, 35]. The
value of optimal k in k-NN has been debated for decades in the SEE community [42].
Commonly, it is determined by an expert of the local organization or pre-defined rules
such as cross-validation [69].

ABE was first introduced to the SEE community by Shepperd and Schofield [165].
The effort of the nearest neighbour was adopted as the estimated effort of the testing
example based on Euclidean distance and standardized features. Their experimental
results demonstrated the potential of ABE for SEE. Thereafter, there have been many
studies investigating variable designs of ABE approaches and their performance in the
context of SEE. However, the reported results have been inconsistent in terms of the
prediction accuracy of ABE approaches compared to other SEE methods [75]. On the
one hand, some studies claimed that ABE methods were inferior to other SEE methods
[141, 35, 78]. In particular, Myrtveit et al. [141] suggested that their performance was
sensitive to the experimental design; Briand et al. [35] found that ABE methods were less
robust than others especially when dealing with heterogeneous data sets. There have been
also some studies finding no clear winner between ABE methods and other conventional
estimation methods [125]. On the other hand, more studies tend to demonstrate superior
performance of ABE approaches than other SEE methods, and thus claimed that ABE
could be a viable alternative to conventional estimation methods in terms of prediction
accuracy and flexibility [165, 15, 123, 44, 109, 111].

There are many ABE variants for SEE mainly differing in their distance metrics, data
preprocessing mechanisms, the ways of integrating the final estimated effort values, and
the incorporation with other techniques such as feature selection [114, 75, 109, 111, 113].
For instance, Kocaguneli et al. [111] proposed a method to proceed feature selection and
outlier pruning as a data preprocessing, to which conventional ABE was applied for SEE.
Their experiments showed supportive results compared to regression trees.

In this thesis, I adopt the basic ABE approach that does not combine with other
sophisticated techniques such as feature selection, for its simplicity, popularity and being
fair to compare against other SEE methods. Specifically, the modified Euclidean distance
is adopted which is commonly formulated in the SEE community:

d(xn1 ,xn2) =

√√√√ D∑
d=1
||xn1

d − x
n2
d ||2∗ , (A.17)

where xn1 and xn2 denote two software projects and

||xn1
d − x

n2
d ||2∗ =


(xn1

d − x
n2
d)2, xd is a numerical feature

1, xd is a categorical feature and xn1
d 6= xn2

d

0, xd is a categorical feature and xn1
d = xn2

d .
(A.18)

Each feature is preprocessed to have zero mean and unit variance as

xd − µd
σd

(A.19)

164

where µd (σd) denotes the mean (STD) of the dth feature. The normalization is to ensure
that no individual feature has greater influence than others in deciding the effort of a
predicting project. Following [111], the median of the effort values is returned as the
estimate of the predicting project.

A.5 Regression Tree (RT)
Regression Tree (RT) has easy-to-understand structures that provide if-then rules to sep-
arate software projects with respect to their features and make effort estimation. Its rules
can be easily readable by practitioners. There are several types of RT [31, 69]. Usually,
binary regression trees are adopted for SEE [136], where each branching node is split into
two children based on the values of a feature as illustrated in figure A.3. In the thesis,
RT is implemented by function fitrtree in MATLAB or REPTree in WEKA [67].

As shown in figure A.3, each leaf node represents a subset of the training examples
used to create the tree. The impact of the feature values is also considered in constructing
the tree. For instance, if functional size is considered as the most important feature to
determine the effort value, it would be used for the highest level split of the tree. Less
important features would be used in lower level splits or even not used at all. Learning
process consists of determining which features to split and based on what values of this
feature. The splitting process is the same as CART [31] when implemented in MATLAB
or C4.5 [151] when implemented in WEKA. The hierarchy of features can be particularly
useful for SEE, as data sets frequently have many (more and less relevant) features yet
insufficient training examples (scarcity problem) [136, 109, 111].

In the prediction process, the leaf node that is the most relevant to the testing ex-
ample in terms of the tree rules is determined, and the training examples in this branch
are used to make the effort estimation. Therefore, RT has the locality property, whose
effort estimate is based on the projects that are most similar to the testing example with
respect to the input features [136]. As SEE data sets tend to be relatively small and very
heterogeneous, such approaches are likely to be more adequate and can help dealing with
the heterogeneity within the data set [114, 136].

RT is among the most frequently used SEE approaches, has potential advantage, and
has been shown to achieve good performance [34, 35, 78, 136, 110, 135, 34, 187, 139].
For instance, Minku et al. [136] showed that RT was more frequently among the best
performed methods, and was a good choice of base learners for the ensemble approach.
They also showed that Bagging with RT performed well, being frequently among the best
approaches and rarely performing considerably worse than the best ones.

A.6 Artificial Neural Network (ANN)
Artificial Neural Network (ANN) is inspired by the architecture of biological neural net-
works, comprising simple interconnected neurons. The neurons compute a weighted sum
of their inputs and generate an output by passing through an activation function. A

165

functional point

Development
mode

Effort = 200

Effort = 80 Effort = 150

< 150 >= 150

enhancement New development

Figure A.3: An example of RT for SEE and its prediction process.

popular example of the activation function is sigmoid:

σ(z) = 1
1 + e−z

∈ [0, 1]. (A.20)

ANN makes no or minimal assumptions on the function being modelled from input fea-
tures to effort values and the data being used for training, and can approximate any con-
tinuous function. The training process consists of adjustments to the connection weights
by means of back propagation [154]. For more details, please refer to [24].

A few types of ANN have been used in SEE [47, 89], among which Multilayer Per-
ceptron (MLP) is one of the most implemented form [76]. MLP consist of at least three
layers of neurons, and the neurons of a layer are connected to all neurons of the next
layer. MLP have not been shown to be so frequently among the best SEE approaches
[136]. For instance, Dejaeger et al. [49] argued that techniques such as ordinary least
squares regression based on logarithm transformed data performed in general better than
MLP analysed in their study. On the other hand, many studies reported the favourably
performance of MLP for SEE [48, 7, 61]. For instance, Tronto et al. [48] showed that
MLP improved SEE over conventional linear models because they were not restricted
to linear functions, being able to model observations that lie far from the best straight
line. Earlier work also reported favourably over MLP [190]. Nevertheless, compared with
RT and ABEs that are more straightforward and understandable, MLP are more like a
less welcoming ‘black-box’ to project managers in terms of their training and prediction
processes, which tells very limited information how the models proceed effort estimate.

A.7 Ensembles of Learning Methods
Lately, ensembles of learning machines have been attracting the attention of the SEE
community as they can frequently improve performance over single learning machines
[29, 116, 136, 8, 110]. An ensemble approach consists of a set of base models that are
trained to perform the same task and then combined together with the aim of improving
the final prediction performance. Ensemble approach can improve the prediction accuracy
over its base learners because each of them has particular assumptions, weaknesses and
strengths, which may be best suitable to different parts of the training examples [8, 193],

166

and can facilitate each other by patching the errors made by others [57].
It is commonly agreed that the base models should behave differently; otherwise,

the overall prediction performance will not be better than the individual models [36].
Intuitively, if base models making the same mistakes are combined into an ensemble, the
ensemble will take the same mistakes as the individual models and its overall performance
will be no better than the individual performance. On the contrary, ensembles composed
of diverse base models can compensate the mistakes of certain models through the correct
prediction performed by other models. In the context of SEE, diversity refers to the
prediction/errors made by the models, i.e., two models are said to be diverse if they make
different errors on the same testing examples [38]. Different ensemble approaches can be
seen as different ways to generate diversity among the base models.

Bootstrap aggregating (Bagging) is a typical ensemble approach designed to improve
the stability and accuracy of learning machines, which can reduce the prediction error
when its base models are unstable [32]. Bagging generates multiple base models trained
on different Bootstrap training bags as follows. Given a training set D of size N , Bagging
generates M new training sets {D (m)|m = 1, · · · ,M}, each of size N , by sampling from
D uniformly and with replacement. On each new training set D (m), one base model is
trained and thus we have M trained models via Bagging. The final prediction is the
average of the prediction from all base models.

Boosting [56] is another popular ensemble approach, which arranges base models in
a sequential manner. Unlike Bagging, the subset creation is not random but depends on
the performance of the previous models: each new subsets contains the training examples
that are likely to have large prediction errors by previous base models, and thus each
base model pays special attention to the training examples on which the previous method
is unsuccessful. Boosting is reported to be better than Bagging in general ML, but has
trouble in handling noisy data [21, 192]. Likely for this reason, Boosting is less popularly
used in SEE since SEE data is highly likely to contain data noise.

In SEE literature, ensemble methods are grouped into two categories: (1) homoge-
neous that combines the same type of learning machines with different configurations and
(2) heterogeneous that combines at least two types of learning machines [57]. The ho-
mogeneous approach is the most commonly used [76]. Recent literature in SEE tends to
support the use of ensemble approaches, showing that ensembles of SEE methods usually
achieve generally better results than single learning machines [76, 110, 137, 136, 110].

For instance, Braga et al. [29] claimed that Bagging could improve the performance of
several base models such as RT and MLP; and Kultur et al. [116] reported that an adapted
version of Bagging provided very large improvements over several single SEE methods.
Moreover, Minku and Yao [137] reported that a Bagging ensemble of MLP performed
similarly to RT in SEE. Later, experimental results in [136] showed that combining the
power of ensembles to local approaches, such as Bagging ensembles of RT, outperformed
several other SEE methods. They concluded that combining ensembles and locality is
a way to tailor ensembles for SEE, and indicated that more improvements may still be
achieved if additional tailoring is performed. Moreover, Kocaguneli et al. [110] proposed
an ensemble scheme that outperformed single methods for SEE. Their method combines

167

several types of so called solo-methods (i.e. single learners and preprocessing techniques)
to perform SEE. They also used Bagging and Boosting as solo-methods in their heteroge-
neous ensemble approach. They reported that the ensemble presented less instability than
solo-methods when ranked in terms of the total number of wins, losses, and wins-losses,
considering several different performance metrics and twenty data sets. These observa-
tions confirmed earlier results reported in the ensemble learning literature that ensembles
generally perform better than its base models. They also reported that the ensemble
methods obtained less losses than other methods.

168

APPENDIX B

Statistical Tests for SEE Methods

This appendix discusses statistical tests used in this thesis for validating the significance
of performance difference in terms of point prediction of SEE methods.

Though most SEE studies involve comparisons among different SEE methods [89], it
has been not long since statistical tests are introduced into the experimental framework
of SEE from the general ML literature [136, 50, 105, 29, 156, 46]. The popular statistical
tests used in the SEE community include Wilcoxon signed-rank tests for a comparison
of two SEE methods across multiple data sets, and Friedman tests for a comparison of
more than two methods across multiple data sets. Recent studies also emphasize the
importance of considering effect size to quantify the difference in performance [164]. Note
that our discussion on Wilcoxon signed-rank test and Friedman test are written with large
inspiration from Demsar’s paper [50].

B.1 Wilcoxon Signed-rank Test
Wilcoxon signed-ranks test is a non-parametric statistical test, and is typically used to
compare two methods across multiple data sets based on their ranks. The null hypothesis
(H0) states that the two methods are equivalent in terms of prediction performance. The
alternative hypothesis (H1) states that they differ.

Wilcoxon signed-rank test is conducted in the following procedures [50]. (1) Let di be
the performance superiority of the method P2 to the method P1 on the ith out of N data
set. The differences {di} are ranked according to their absolute values, and average ranks
are assigned in case of ties. (2) Let R+ be the sum of ranks across the data sets where P2
outperforms P1 (i.e. di > 0), and R− be the sum of ranks where P1 outperforms P2 (i.e.
di < 0). Ranks of di = 0 are split evenly among the sums, and if the number is odd, one
is ignored. This step is formulated as

R+ = ∑
di>0 rank(di) + 1

2
∑
di=0 rank(di),

R− = ∑
di<0 rank(di) + 1

2
∑
di=0 rank(di).

(B.1)

169

Table B.1: Comparison of predictors P1 vs P2 in terms of prediction accuracy [50, table 2].

Data set P1 P2 di rank
D1 0.763 0.768 +0.005 3.5
D2 0.599 0.591 -0.008 7
D3 0.954 0.971 +0.017 9
D4 0.628 0.661 +0.033 12
D5 0.882 0.888 +0.006 5
D6 0.936 0.931 -0.005 3.5
D7 0.661 0.668 +0.007 6
D8 0.583 0.583 0.000 1.5
D9 0.775 0.838 +0.063 14
D10 1.000 1.000 0.000 1.5
D11 0.940 0.962 +0.022 11
D12 0.619 0.666 +0.047 13
D13 0.972 0.981 +0.009 8
D14 0.957 0.978 +0.021 10

(3) Let T be the smaller of the sums as

T = min(R+, R−). (B.2)

(4) For a large number of data sets, the statistics z should be distributed approximately
normally, defined as

z =
T − 1

4N(N + 1)√
1
24N(N + 1)(2N + 1)

. (B.3)

Specifically, with α = 0.05, the null-hypothesis can be rejected if z is smaller than −1.96.
When the number of data sets is small, we can refer to the tables of critical values
of Wilcoxon signed-rank test [2] to compare the performance of two methods. Most
books on general statistics include a table of exact critical values for T and N up to
25 (or sometimes more) for us to refer. In practice, there is often not enough data sets
investigated, therefore the tables for critical values are often required when comparing
the performance of two methods.

An example of Wilcoxon signed-rank test is described in table B.1 and [50]. The
null hypothesis (H0) is that the algorithms P1 and P2 perform equally well in terms of
prediction accuracy. As shown in table B.1, the predictors performed equally on two data
sets (D8 and D10) with d8 = d10 = 0. The ranks are assigned from the lowest to the
highest with respect to the absolute difference {di}. In particular, the equal difference
of d1 and d6 is assigned with their average ranks. The sum of ranks for the positive and
negative difference are

R+ = 3.5 + 9 + 12 + 5 + 6 + 14 + 11 + 13 + 8 + 10 + 1.5 = 93,
R− = 7 + 3.5 + 1.5 = 12. (B.4)

170

Thus, we can have that
T = min(R+, R−) = 12. (B.5)

According to the table of critical values of Wilcoxon signed-ranks test [2] with the confi-
dence level α = 0.05 and N = 14, the difference between methods P1 and P2 is significant if
the smaller of the sums is equal to or less than 21. Therefore, we reject the null-hypothesis
and conclude that methods P1 and P2 perform significantly differently.

B.2 Friedman Test
Friedman test is a non-parametric statistical test and typically used to determine whether
the prediction performance of multiple methods is significantly different across multiple
data sets [50]. The null hypothesis (H0) states that all the predictors are equivalent in
terms of prediction accuracy/error. The alternative hypothesis (H1) states that at least
one pair of the methods differ.

Friedman test is conducted in the following procedures [50]. (1) Let rkn be the rank of
the kth of K algorithms on the nth out of N data sets. (2) Compute the average ranks of
the methods across all data sets as

Rk = 1
N

N∑
n=1

rkn, ∀k = {1, · · · , K}. (B.6)

(3) Compute the Friedman statistic as

χ2
z = 12N

k(k + 1)[
k∑
j=1

R2
j −

k(k + 12)
4], (B.7)

and it should be distributed according to χ2
z with K − 1 degrees of freedom. Iman and

Davenport showed that Friedman’s χ2
z was undesirably conservative and derived a better

statistic base on χ2
z as

FF = (N − 1)χ2
z

N(k − 1)− χ2
z
, (B.8)

and it should be distributed according to the F -distribution with k−1 and (k−1)(N−1)
degrees of freedom when N and K are big enough (as a rule of a thumb, N > 10 and
K > 4). For small numbers of methods and data sets, we can refer to the tables of the
exact critical values of Friedman tests [1] to accomplish the statistical test.

An illustration of Friedman test is discussed in table B.2 and [50]. The null hypothesis
(H0) states that the four methods perform statistically equally in terms of prediction
accuracy. The rank rkn of method Pk on the nth data set is in the parentheses associated
to its prediction accuracy. Their average ranks {Rk} across data sets provide a fair
comparison of the methods. As shown in table B.2, methods P2 and P4 have the best and
second best average ranks, followed by P3 with the third average rank. P1 has the worse
average rank. Compute the statistics to judges whether the average ranks are significantly

171

Table B.2: Comparison of predictors P1, P2, P3, and P4 in terms of prediction accuracy.
The ranks in the parentheses are used in computation of the Friedman test [50, table 6].

Data set P1 P2 P3 P4
D1 0.763 (4) 0.768 (3) 0.771 (2) 0.798 (1)
D2 0.599 (1) 0.591 (2) 0.590 (3) 0.569 (4)
D3 0.954 (4) 0.971 (1) 0.968 (2) 0.967 (3)
D4 0.628 (4) 0.661 (1) 0.654 (3) 0.657 (2)
D5 0.882 (4) 0.888 (2) 0.886 (3) 0.898 (1)
D6 0.936 (1) 0.931 (2.5) 0.916 (4) 0.931 (2.5)
D7 0.661 (3) 0.668 (2) 0.609 (4) 0.685 (1)
D8 0.583 (2.5) 0.583 (2.5) 0.563 (4) 0.625 (1)
D9 0.775 (4) 0.838 (3) 0.866 (2) 0.875 (1)
D10 1.000 (2.5) 1.000 (2.5) 1.000 (2.5) 1.000 (2.5)
D11 0.940 (4) 0.962 (2.5) 0.965 (1) 0.962 (2.5)
D12 0.619 (3) 0.666 (2) 0.614 (4) 0.669 (1)
D13 0.972 (4) 0.981 (1) 0.975 (2) 0.975 (3)
D14 0.957 (3) 0.978 (1) 0.946 (4) 0.970 (2)

average rank 3.143 2.000 2.893 1.964

different under the null-hypothesis as

χ2
z = 12×14

4×5 [3.1432 + 2.0002 + 2.8932 + 1.9642)− 4.52

4] = 9.28

FF = 13×9.28
14×3−9.28 = 3.69.

(B.9)

With 4 methods and 14 data sets, FF is distributed according to the F distribution with
4−1 = 3 and (4−1)× (14−1) = 39 degrees of freedom. The critical value of F (3, 39) for
α = 0.05 is 2.85 according to the table of critical values for F distribution [3]. Therefore,
we reject the H0 and conclude that the four methods differ significantly.

If the null hypothesis is rejected, we can proceed with a post-hoc test, where all
methods are compared against a control method, to check where the difference is. In
the thesis, I adopt Holm-Bonferroni corrections to compare each SEE method against the
control method for its greater power to identify the different pairs in comparison to other
post-hoc statistics based on pair-wise comparisons such as Nemenyi and for its making
no additional assumptions about the hypotheses tests [50]. Sometimes the Friedman
test reports a significant difference but the post-hoc test fails to detect the significantly
different pairs. This is mainly due to the lower power of the post-hoc test. In other
words, the post-hoc test is generally weaker than the Friedman test. In this case, no
other conclusions than that some methods do differ can be drawn [50].

Holm-Bonferroni post-hoc test is conducted as the procedures of Holm’s [72]. (1)
Compute statistics {zk} by comparing method Pk against the control method Pc in ranks

172

Table B.3: Holm-Bonferroni post-hoc correction after Friedman test with the significance
level 0.05 for predictors P1, P2, P3, and P4 in terms of prediction accuracy. P1 is chosen
as the control method. Statistics {pk} have been sorted in increasing order [50].

σ(k) Predictor z = (R1 −Rk)/SE p α/(K − σ(k))
1 P4 (3.143− 1.964)/0.488 = 2.416 0.016 0.05/(4− 1) = 0.017
2 P2 (3.143− 2.000)/0.488 = 2.342 0.019 0.05/(4− 2) = 0.025
3 P3 (3.143− 2.893)/0.488 = 0.512 0.607 0.05/(4− 3) = 0.050

as

zk = (Rk −Rc)/
√
K(K + 1)

6N ,∀k ∈ {1, · · · , K}. (B.10)

(2) Find the corresponding probabilities {pk} based on the statistics {zk} from the
CDF table of Gaussian distribution. (3) Sort the {pk} increasingly such that pσ(1) 6
pσ(2) · · · pσ(K−1) (suppose that pσ(K) corresponds to the control method), where σ(·) is a
permutation function. (4) Compare pσ(k) with α

K−σ(k) , where α is a significance level, such
as α = 0.05. Holm-Bonferroni’s step-down procedure starts with the smallest p value.
Specifically, if pσ(1) is below α

K−1 , the corresponding hypothesis is rejected and we are
allowed to compare pσ(2) with α

K−2 . If the second hypothesis is rejected, the test proceeds
with the third, and so on. As soon as a certain null hypothesis cannot be rejected, all the
remaining hypotheses are accepted.

The procedures of Holm-Bonferroni correction is illustrated in table B.2 and [50]. Let
the standard error be SE =

√
4·5
6·14 = 0.488, and compute the statistics zk as in table B.3.

Find the corresponding probabilities {pk} based on those {zk} as shown in the table. Note
that the {pk} have been sorted in increasing order. Compare pσ(k) with α

K−σ(k) and we
can see that the first and the second hypotheses can be rejected, but not the third one.
So we conclude that P1 performs significantly worse than P4 and P2.

B.3 Effect Size
Effect size is a simple way of quantifying the difference between two methods with multiple
runs [183, 46]. It can be used to justify whether there is large performance improvement
over a control method, since the statistical significance test cannot detect the magnitude
of performance difference. There are more than seventy varieties of effect sizes [12, 183,
46], among which we discuss the parametric Cohen’s d and non-parametric Vargha and
Delaney’s A12 as they have been recommended in the community of SEE [121, 164].

Cohen’s d is probably the most popular standardized effect size, which is based on the
difference between the average performance across multiple runs (e.g. average performance
across data sets) [168]. In the SEE context, if it is obvious that which of the two groups
of experiments corresponds to the control method, the effect size d can be calculated as

d = |pfctr − pfcmp|
stdctr

, (B.11)

173

where pfcmp and pfctr denote the average prediction performance across data sets of the
competing and control methods respectively, and stdctr denotes the standard deviation of
the performance of the control method across data sets. If it is not obvious to decide the
control method, the effect size can be calculated using the pooled standard deviation as

d = pf1 − pf2√
std2

1+std2
2

2

, (B.12)

where pfi denotes the prediction performance of the ith (i ∈ {1, 2}) method across data
sets, and stdi denotes its corresponding standard deviation. Overall, Cohen’s d effect size
is measured by the difference in mean that is scaled over the standard deviation. The
effect size d can be interpreted in terms of Cohen’s categories [164] as: small (≈ 0.2),
medium (≈ 0.5) and large (≈ 0.8).

A potential problem of Cohen’s d effect size is that it is parametric and assumes the
normality of the data, and thus the measure of effect size is sensitive to the violation of
the assumption of normality [12, 46]. For this reason, some more robust non-parametric
alternatives have been suggested [168].

The Vargha and Delaney’s A12 is a non-parametric effect size that makes no assump-
tions on the underlying distribution [183, 12]. Its use has been advocated in [121], and
one example of its use in software engineering can be found in [150]. Effect size A12 is
computed as

A12 = 1
N
· (R1

N
− N + 1

2), (B.13)

where N is the number of data sets, and R1 is the statistics of the Wilcoxon rank sum test1.
Wilcoxon rank sum test (also called Mann-Whiney U-test) is non-parametric and does not
require the assumption of normal distributions [126]. The null hypothesis states that the
prediction performance of methods P1 and P2 are sampled from continuous distributions
with equal median.

In the SEE context, A12 measures the probability that running predictor P1 yields
better performance than running the other predictor P2. If the two predictors are equiv-
alent, then A12 = 0.5. This effect size is easier to interpret compared to the d family. For
instance, A12 = 0.7 entails we would obtain higher results 70% of the time with predictor
P1. It is interpreted according to Vargha and Delaney’s categories [183]: small (>0.56),
medium (>0.64) and large (> 0.71).

Though being less robust than non-parametric effect size, the parametric Cohen’s d
is more powerful than the non-parametric Vargha and Delaney’s A12 when the normality
assumption holds. However, the tests to check whether assumptions (e.g. normality tests)
hold are not always good, and thus A12 would be a ‘safe’ option though it may be a bit
weaker. In practice, people should choose the type of effect size according to their purpose.

1MATLAB function ranksum can be used to calculate this statistical test. Wilcoxon rank sum test
is used to determine whether two independent samples are selected from populations having the same
distribution; Wilcoxon signed-rank test is used for this purpose but with dependent samples.

174

APPENDIX C

Effect of Synthetic Data on Prediction Performance
in Original Scale of Effort Values

To investigate the effectiveness of our synthetic project generator proposed in chapter 3,
table 3.3 reports the performance comparisons in terms of MAE in the logarithm scale of
effort values for being less affected by project size.

In this appendix, we report the performance comparisons in terms of MAE in the
original scale of effort values. Specifically, once an SEE method provides an effort estimate,
take the exponentiation of that value as the final prediction and calculate the prediction
performance in terms of MAE using effort values in the original scale. Table C.1 lists the
performance comparisons between pairs of syn.SEEr vs bsl.SEEr across 14 data sets in
terms of MAE for small, medium, and large training set sizes. We can see that the key
conclusion that syn.SEEr always performed similarly/better than bsl.SEEr remains the
same.

Again, the performance of MLR/ATLM is unstable in some SEE data sets. For in-
stance, ATLM performs extremely poorly in many of the data sets, with infinite MAE
(mean MAE of 30 runs), when the training set is small. Further investigation finds
that ATLM performs extremely poorly on one or two of the 30 runs. As discussed in sec-
tion 3.4.1, the unstable performance of MLR/ATLM may be due to the scarcity of training
examples causing the ill-conditional problem when doing matrix inversion in the training
process. This problem becomes even worse when computing the prediction performance
in the original scale of effort values.

0This appendix corresponds chapter 3 for answering RQ1.

175

Ta
bl

e
C

.1
:

P
er

fo
rm

an
ce

co
m

pa
ri

so
n

of
pa

ir
s

of
sy

n.
SE

E
r

vs
bs

l.S
E

E
r

ac
ro

ss
14

da
ta

se
ts

in
te

rm
s

of
M

A
E

in
th

e
or

ig
in

al
eff

or
t

sp
ac

e
fo

r
sm

al
l,

m
ed

iu
m

an
d

la
rg

e
tr

ai
ni

ng
se

t
si

ze
s.

T
he

di
ffe

re
nt

tr
ai

ni
ng

se
t

si
ze

s
re

fe
r

to
di

ffe
re

nt
ho

ld
ou

t
va

lu
es

in
ta

bl
e

3.
1.

T
he

re
po

rt
ed

va
lu

es
ar

e
th

e
m

ea
n

of
30

ru
ns

fo
llo

w
ed

by
th

ei
r

ST
D

s.
T

he
co

m
pa

ri
so

n
is

hi
gh

lig
ht

ed
in

or
an

ge
(d

ar
k

gr
ey

)
an

d
bo

ld
fo

nt
fo

r
la

rg
e,

in
ye

llo
w

(l
ig

ht
gr

ey
)

an
d

bo
ld

fo
nt

fo
r

m
ed

iu
m

,a
nd

in
bo

ld
fo

nt
fo

r
sm

al
le

ffe
ct

si
ze

.
T

he
la

st
tw

o
ro

w
s

lis
t

W
ilc

ox
on

te
st

s
w

it
h

B
on

fe
rr

on
ic

or
re

ct
io

n.
T

he
ov

er
al

lc
om

pa
ri

so
n

of
bs

l.S
E

E
r

vs
sy

n.
SE

E
r

ca
n

be
se

en
fr

om
av

eR
an

k
(a

ve
ra

ge
ra

nk
).

T
he

fir
st

va
lu

e
1

(o
r

0)
in

W
ilc

ox
on

ro
w

m
ea

ns
th

er
e

is
(o

r
no

t)
si

gn
ifi

ca
nt

di
ffe

re
nc

e,
an

d
it

s
co

rr
es

po
nd

in
g
p
-v

al
ue

co
m

es
th

e
ne

xt
.

Si
gn

ifi
ca

nt
di

ffe
re

nc
e

is
hi

gh
lig

ht
ed

in
or

an
ge

(d
ar

k
gr

ey
)

on
th

is
ro

w
.

’In
f’

in
di

ca
te

s
in

fin
ite

er
ro

r
in

te
rm

s
of

M
A

E
,w

hi
ch

on
ly

ha
pp

en
s

to
M

LR
or

A
T

LM
w

it
h

sm
al

lt
ra

in
in

g
se

t
si

ze
.

Fu
rt

he
r

in
ve

st
ig

at
io

n
fin

ds
th

at
on

ly
on

e
or

tw
o

ou
t

of
th

e
to

ta
l3

0
ru

ns
co

m
m

it
ex

tr
em

el
y

la
rg

e
er

ro
r.

(a
)

Sm
al

l
tr

ai
ni

ng
se

t
si

ze
.

D
at

a
sy

n.
M

LR
bs

l.M
LR

sy
n.

A
T

LM
bs

l.A
T

LM
sy

n.
k
-N

N
bs

l.k
-N

N
sy

n.
RV

M
bs

l.R
V

M
sy

n.
R

T
bs

l.R
T

sy
n.

SV
R

bs
l.S

V
R

M
ax

w
el

l
52

07
.4
±

13
29

.3
49

63
6.

7±
82

39
7.

5
56

54
.1
±

20
05

.6
In

f±
N

aN
52

44
.0
±

86
8.

6
52

85
.7
±

85
8.

9
42

62
.7
±

78
8.

4
47

28
.6
±

98
1.

5
51

47
.4
±

69
3.

5
53

35
.0
±

74
9.

4
42

30
.8
±

83
5.

1
45

32
.9
±

85
0.

9
C

oc
om

o8
1

45
0.

8±
21

7.
6

In
f±

In
f

64
8.

9±
47

6.
4

In
f±

N
aN

62
5.

5±
12

3.
3

62
5.

2±
13

6.
5

39
0.

0±
15

5.
6

45
1.

3±
13

6.
0

60
7.

4±
12

2.
8

62
7.

1±
13

0.
1

40
2.

5±
12

8.
2

42
1.

2±
14

5.
8

N
as

a9
3

43
5.

6±
18

5.
9

In
f±

In
f

55
2.

0±
39

8.
5

In
f±

In
f

47
0.

7±
75

.8
47

8.
4±

73
.0

31
7.

5±
10

3.
8

33
5.

8±
10

1.
8

44
0.

0±
77

.5
46

7.
6±

68
.8

33
9.

3±
86

.7
33

1.
2±

69
.4

K
it

ch
en

ha
m

21
22

.3
±

11
41

.1
32

30
.0
±

28
71

.6
38

50
.1
±

49
19

.2
58

75
.8
±

87
94

.2
22

77
.5
±

31
7.

6
23

05
.9
±

35
0.

1
21

71
.6
±

48
5.

4
23

23
.6
±

36
4.

8
23

72
.9
±

33
5.

5
24

13
.1
±

24
9.

5
18

77
.2
±

61
6.

0
20

46
.8
±

39
1.

3
A

lb
re

ch
t

24
.7
±

48
.5

In
f±

In
f

30
.1
±

51
.7

In
f±

N
aN

12
.9
±

4.
2

12
.5
±

4.
4

11
.0
±

4.
6

12
.5
±

5.
9

15
.0
±

4.
8

16
.3
±

3.
4

9.
7±

3.
5

10
.3
±

4.
0

K
em

er
er

75
1.

9±
28

29
.2

22
72

.1
±

10
47

2.
1

10
01

.6
±

32
09

.8
In

f±
N

aN
13

2.
2±

43
.0

14
0.

3±
38

.1
13

2.
5±

50
.8

13
0.

2±
46

.7
15

1.
3±

40
.5

15
4.

8±
32

.5
11

4.
8±

41
.4

11
8.

4±
42

.3
D

es
ha

r
38

51
.0
±

30
64

.1
In

f±
In

f
46

55
.2
±

50
03

.8
In

f±
In

f
27

11
.9
±

31
6.

0
27

28
.7
±

38
0.

7
25

79
.1
±

40
2.

8
26

40
.7
±

53
3.

1
27

52
.8
±

34
6.

3
29

49
.0
±

28
4.

4
23

24
.3
±

26
4.

8
23

26
.3
±

31
0.

8
O

rg
1

54
68

.8
±

63
01

.4
In

f±
In

f
29

72
2.

3±
88

95
2.

6
In

f±
N

aN
36

74
.6
±

80
4.

8
35

57
.5
±

37
8.

5
35

60
.1
±

36
5.

9
35

90
.3
±

40
7.

7
38

62
.3
±

67
8.

6
37

77
.4
±

44
0.

4
34

76
.9
±

33
5.

2
34

81
.6
±

38
4.

4
O

rg
2

27
38

53
.8
±

14
80

23
3.

9
29

37
84

.7
±

14
68

38
0.

1
34

52
.7
±

24
47

.7
59

06
1.

8±
24

77
95

.7
22

84
.0
±

89
6.

0
22

07
.2
±

68
7.

8
21

29
.6
±

52
0.

1
20

42
.0
±

39
6.

7
24

03
.3
±

10
54

.6
23

35
.8
±

82
5.

1
21

58
.0
±

72
0.

3
21

86
.0
±

87
4.

7
O

rg
3

12
91

.1
±

39
4.

8
14

34
.8
±

71
4.

0
13

10
.9
±

47
8.

7
14

94
.6
±

77
0.

8
12

96
.9
±

15
0.

4
13

12
.0
±

16
6.

5
12

84
.9
±

25
5.

7
13

83
.7
±

18
1.

6
13

65
.0
±

20
4.

5
15

49
.2
±

11
8.

7
11

58
.3
±

20
0.

6
12

17
.4
±

22
0.

8
O

rg
4

76
23

.3
±

10
56

7.
0

In
f±

In
f

67
42

.3
±

53
88

.8
In

f±
N

aN
46

93
.1
±

77
4.

8
44

16
.2
±

40
4.

2
44

42
.2
±

27
1.

6
44

11
.3
±

25
7.

1
46

18
.0
±

81
0.

7
45

86
.8
±

81
3.

0
42

75
.5
±

31
6.

5
44

26
.0
±

71
7.

8
O

rg
5

10
34

10
0.

0±
51

60
67

6.
2

In
f±

In
f

13
82

89
.8
±

41
85

98
.6

In
f±

In
f

69
79

.1
±

12
34

.0
71

29
.3
±

11
01

.8
71

91
.9
±

17
07

.4
72

18
.3
±

96
7.

8
76

84
.0
±

15
75

.6
75

09
.1
±

13
04

.0
63

88
.8
±

20
96

.3
69

05
.9
±

19
88

.9
O

rg
6

13
09

61
9.

1±
69

63
27

6.
4

In
f±

In
f

26
83

97
2.

5±
94

01
04

0.
3

In
f±

In
f

35
03

.4
±

91
9.

3
34

40
.5
±

83
9.

1
34

68
.3
±

81
7.

2
36

35
.1
±

80
5.

0
45

44
.8
±

19
48

.0
46

31
.0
±

18
80

.4
34

55
.7
±

15
00

.7
36

34
.1
±

10
81

.8
O

rg
7

28
03

18
7.

7±
14

86
29

57
.4

In
f±

In
f

33
33

71
6.

6±
15

06
04

37
.3

In
f±

In
f

58
89

.4
±

16
19

.0
55

29
.5
±

81
2.

5
55

77
.9
±

10
42

.1
54

47
.3
±

61
7.

8
57

59
.9
±

13
14

.1
55

29
.5
±

81
2.

5
56

35
.9
±

12
40

.5
53

96
.4
±

77
9.

7
av

eR
an

k
1.

00
2.

00
1.

00
2.

00
1.

50
1.

50
1.

29
1.

71
1.

36
1.

64
1.

14
1.

86
W

ilc
ox

on
1

0.
00

00
91

1
0.

00
00

91
0

0.
66

98
00

0
0.

13
52

54
0

0.
62

57
32

1
0.

00
37

63

(b
)

M
ed

iu
m

tr
ai

ni
ng

se
t

si
ze

.

D
at

a
sy

n.
M

LR
bs

l.M
LR

sy
n.

A
T

LM
bs

l.A
T

LM
sy

n.
k
-N

N
bs

l.k
-N

N
sy

n.
RV

M
bs

l.R
V

M
sy

n.
R

T
bs

l.R
T

sy
n.

SV
R

bs
l.S

V
R

M
ax

w
el

l
36

28
.6
±

11
49

.4
66

69
.2
±

76
19

.6
36

70
.4
±

11
52

.7
10

36
1.

5±
22

77
3.

4
48

70
.7
±

19
84

.5
50

71
.2
±

19
72

.5
39

21
.5
±

10
19

.3
43

81
.8
±

13
40

.7
46

56
.1
±

16
18

.0
46

61
.2
±

17
86

.7
36

31
.9
±

13
27

.4
37

66
.8
±

13
02

.2
C

oc
om

o8
1

25
8.

9±
15

9.
4

26
1.

9±
13

1.
6

29
5.

1±
17

2.
4

50
6.

3±
39

0.
2

52
2.

6±
28

6.
2

54
8.

0±
28

3.
9

26
2.

2±
16

4.
8

26
1.

3±
16

9.
3

44
5.

6±
23

6.
3

49
7.

0±
23

1.
5

25
6.

8±
15

1.
3

26
6.

1±
13

7.
7

N
as

a9
3

32
7.

2±
13

7.
1

26
0.

1±
15

7.
7

32
7.

2±
13

7.
1

26
0.

1±
15

7.
7

46
4.

3±
15

2.
4

47
3.

6±
16

1.
4

24
6.

7±
80

.3
25

1.
8±

79
.9

38
7.

2±
14

8.
8

39
3.

1±
14

8.
9

29
6.

2±
11

3.
3

28
0.

4±
10

3.
8

K
it

ch
en

ha
m

16
73

.2
±

28
2.

4
96

98
.5
±

42
66

0.
7

17
23

.3
±

38
3.

6
10

00
5.

9±
42

63
2.

8
20

32
.3
±

23
1.

0
20

38
.2
±

24
7.

4
18

48
.3
±

28
2.

6
20

34
.8
±

36
9.

1
22

03
.7
±

30
2.

7
22

00
.3
±

29
0.

3
16

68
.4
±

36
4.

4
17

82
.4
±

47
8.

7
A

lb
re

ch
t

9.
3±

4.
5

18
.3
±

23
.0

10
.3
±

8.
0

21
.1
±

24
.0

9.
4±

4.
9

9.
4±

4.
8

8.
6±

3.
9

8.
3±

3.
6

10
.7
±

4.
9

14
.6
±

5.
9

8.
6±

4.
3

8.
3±

3.
7

K
em

er
er

12
2.

5±
83

.1
12

98
.4
±

38
30

.9
11

8.
0±

81
.8

24
72

.5
±

79
38

.6
11

1.
3±

79
.3

11
9.

1±
79

.5
10

5.
5±

73
.8

11
2.

8±
79

.4
12

8.
1±

79
.6

13
7.

9±
69

.1
97

.3
±

70
.7

98
.9
±

74
.2

D
es

ha
r

21
90

.0
±

35
5.

8
25

86
.6
±

84
6.

0
21

88
.8
±

35
7.

8
26

21
.1
±

85
0.

9
24

36
.6
±

21
7.

8
24

25
.6
±

24
3.

5
22

27
.7
±

34
1.

5
22

89
.7
±

42
2.

4
25

70
.8
±

27
6.

4
25

90
.4
±

33
0.

7
20

18
.9
±

25
7.

9
20

35
.7
±

27
6.

1
O

rg
1

34
11

.0
±

45
6.

7
38

93
.2
±

19
31

.0
35

83
.9
±

70
3.

9
46

77
.7
±

46
55

.4
34

63
.9
±

39
2.

2
34

88
.2
±

41
3.

2
35

52
.1
±

40
8.

3
35

67
.4
±

38
2.

3
36

92
.4
±

23
2.

8
36

32
.4
±

18
3.

2
32

61
.0
±

35
1.

2
34

51
.4
±

41
1.

2
O

rg
2

18
48

.9
±

31
0.

5
18

87
.1
±

42
1.

2
18

46
.3
±

31
8.

4
18

87
.6
±

42
9.

9
19

78
.0
±

31
8.

1
19

57
.4
±

28
2.

4
18

80
.4
±

36
1.

0
18

27
.9
±

35
7.

4
19

54
.0
±

25
3.

0
20

86
.4
±

29
9.

4
18

17
.2
±

33
3.

8
18

33
.5
±

30
2.

0
O

rg
3

11
24

.0
±

21
5.

7
11

68
.6
±

35
8.

5
11

28
.1
±

21
9.

5
11

74
.2
±

36
5.

9
12

09
.1
±

96
.1

12
14

.3
±

10
3.

5
11

38
.0
±

13
0.

0
12

39
.2
±

16
0.

4
12

51
.6
±

12
8.

0
12

97
.5
±

77
.2

10
81

.2
±

16
3.

6
10

68
.3
±

12
0.

1
O

rg
4

41
92

.4
±

44
9.

7
86

58
.1
±

19
68

0.
0

42
51

.6
±

55
9.

6
98

79
.7
±

21
19

1.
7

42
09

.8
±

43
5.

3
42

02
.6
±

37
9.

1
40

52
.5
±

33
5.

1
44

70
.0
±

45
2.

3
41

99
.7
±

26
5.

5
43

74
.5
±

25
8.

5
39

91
.5
±

28
7.

2
41

10
.5
±

35
1.

2
O

rg
5

72
68

.3
±

66
23

.5
23

82
6.

5±
56

64
4.

7
10

48
3.

1±
12

09
3.

6
27

47
6.

3±
57

74
5.

5
59

88
.1
±

14
00

.1
59

44
.9
±

13
86

.5
58

80
.4
±

16
50

.5
65

49
.7
±

21
35

.5
60

66
.5
±

15
32

.7
68

48
.0
±

13
62

.1
44

24
.9
±

15
86

.1
46

25
.8
±

16
80

.3
O

rg
6

11
50

2.
9±

20
45

7.
8

90
31

0.
8±

39
43

16
.3

35
40

7.
4±

97
99

7.
7

16
79

84
.4
±

52
78

85
.4

28
94

.5
±

78
3.

8
29

60
.8
±

83
6.

8
30

92
.0
±

82
5.

6
39

00
.1
±

25
64

.6
32

40
.8
±

69
7.

8
38

30
.4
±

74
2.

2
28

86
.0
±

10
25

.2
31

79
.1
±

10
74

.6
O

rg
7

51
38

.5
±

82
5.

4
15

47
7.

8±
58

18
9.

8
52

94
.1
±

12
11

.4
15

54
9.

2±
58

17
8.

2
51

92
.4
±

85
6.

9
52

36
.9
±

74
7.

3
50

11
.7
±

56
8.

7
56

84
.5
±

14
39

.5
49

59
.0
±

99
3.

1
51

90
.6
±

78
1.

5
48

36
.5
±

77
9.

0
49

04
.0
±

81
8.

5
av

eR
an

k
1.

07
1.

93
1.

07
1.

93
1.

29
1.

71
1.

21
1.

79
1.

14
1.

86
1.

21
1.

79
W

ilc
ox

on
1

0.
00

06
70

1
0.

00
06

70
0

0.
17

26
07

1
0.

01
62

55
1

0.
00

37
63

1
0.

01
62

55

(c
)

L
ar

ge
tr

ai
ni

ng
se

t
si

ze
.

D
at

a
sy

n.
M

LR
bs

l.M
LR

sy
n.

A
T

LM
bs

l.A
T

LM
sy

n.
k
-N

N
bs

l.k
-N

N
sy

n.
RV

M
bs

l.R
V

M
sy

n.
R

T
bs

l.R
T

sy
n.

SV
R

bs
l.S

V
R

M
ax

w
el

l
43

14
.8
±

48
78

.2
40

89
.5
±

51
53

.2
43

26
.1
±

48
91

.4
41

80
.9
±

51
74

.5
65

61
.9
±

10
52

9.
7

66
06

.7
±

10
50

6.
1

39
83

.2
±

46
36

.6
49

99
.8
±

67
82

.3
44

50
.5
±

72
20

.8
48

06
.7
±

72
86

.5
38

59
.9
±

39
85

.7
35

62
.1
±

38
44

.0
C

oc
om

o8
1

23
2.

1±
40

1.
6

24
7.

8±
53

1.
5

24
8.

6±
44

9.
0

42
3.

7±
13

60
.0

32
6.

5±
45

4.
4

38
7.

8±
48

5.
6

13
6.

2±
22

0.
2

17
2.

4±
27

9.
4

24
2.

5±
42

1.
3

35
9.

9±
52

0.
5

18
3.

8±
34

0.
5

20
6.

0±
37

5.
4

N
as

a9
3

17
4.

8±
25

0.
6

13
0.

5±
19

0.
6

17
4.

8±
25

0.
6

13
0.

5±
19

0.
6

28
2.

6±
45

8.
5

30
2.

3±
46

3.
6

13
5.

5±
17

1.
4

18
4.

6±
21

4.
6

17
7.

9±
36

3.
7

16
6.

1±
26

3.
9

11
7.

2±
15

6.
3

14
7.

2±
20

6.
8

K
it

ch
en

ha
m

15
52

.2
±

84
9.

6
15

62
.6
±

86
1.

0
14

83
.3
±

77
1.

7
14

99
.2
±

76
7.

0
18

02
.0
±

10
42

.0
18

17
.2
±

10
89

.8
15

13
.3
±

84
7.

2
15

51
.3
±

90
2.

0
18

93
.0
±

10
80

.8
19

77
.6
±

10
45

.2
14

12
.9
±

70
5.

4
14

10
.8
±

68
4.

8
A

lb
re

ch
t

6.
3±

6.
8

11
.5
±

31
.6

6.
3±

6.
8

11
.5
±

31
.6

6.
7±

10
.2

8.
5±

14
.6

5.
5±

5.
6

7.
0±

7.
8

6.
9±

6.
9

11
.7
±

12
.0

5.
8±

9.
4

6.
3±

11
.4

K
em

er
er

11
0.

3±
19

4.
3

11
5.

6±
19

3.
3

10
6.

8±
19

4.
5

11
2.

8±
19

4.
0

11
9.

2±
20

7.
2

12
0.

4±
20

8.
0

85
.5
±

14
8.

0
10

3.
1±

22
7.

7
12

5.
1±

22
0.

6
14

5.
1±

22
2.

0
99

.7
±

20
0.

7
10

1.
5±

19
7.

6
D

es
ha

r
20

30
.8
±

42
0.

4
21

14
.8
±

44
2.

7
20

31
.5
±

41
9.

5
21

17
.0
±

44
3.

7
23

25
.5
±

48
7.

4
23

77
.4
±

45
6.

9
20

11
.1
±

47
4.

4
20

89
.2
±

48
3.

2
22

39
.2
±

57
2.

5
23

21
.3
±

70
7.

8
20

16
.4
±

42
5.

3
20

41
.7
±

42
2.

8
O

rg
1

27
79

.6
±

24
75

.8
27

64
.4
±

24
17

.1
29

14
.8
±

24
47

.3
30

77
.2
±

24
20

.1
34

48
.6
±

27
40

.6
34

31
.4
±

29
38

.9
31

53
.3
±

30
00

.7
31

76
.2
±

30
43

.7
33

78
.9
±

28
29

.1
39

33
.4
±

26
45

.8
28

49
.2
±

25
21

.8
28

81
.8
±

24
46

.5
O

rg
2

15
75

.7
±

44
2.

9
15

82
.9
±

48
6.

4
15

65
.9
±

44
7.

4
15

67
.1
±

48
5.

5
17

72
.5
±

50
1.

5
18

35
.2
±

48
9.

7
16

31
.7
±

53
7.

7
16

36
.4
±

58
7.

9
17

38
.2
±

46
5.

8
16

84
.7
±

51
0.

9
15

24
.7
±

39
6.

8
15

20
.6
±

43
9.

7
O

rg
3

94
4.

6±
19

9.
9

94
2.

4±
20

6.
3

94
4.

7±
19

7.
2

94
2.

4±
20

6.
3

10
65

.4
±

23
0.

5
10

78
.7
±

21
6.

8
95

0.
9±

20
6.

1
96

4.
5±

22
0.

7
99

8.
3±

22
2.

3
97

6.
0±

23
5.

2
93

1.
1±

19
3.

7
92

9.
4±

20
0.

4
O

rg
4

39
09

.8
±

87
9.

0
39

63
.8
±

85
9.

0
39

44
.6
±

87
8.

5
40

46
.7
±

91
7.

9
41

26
.1
±

10
09

.8
42

39
.5
±

93
9.

1
37

53
.7
±

88
0.

5
38

15
.0
±

89
2.

5
39

97
.0
±

89
9.

0
40

74
.2
±

94
6.

9
38

38
.6
±

83
7.

2
38

96
.8
±

79
4.

7
O

rg
5

38
06

.3
±

18
86

.2
46

71
.7
±

32
52

.0
39

76
.3
±

18
17

.3
47

33
.0
±

32
33

.7
56

28
.3
±

26
77

.5
57

83
.1
±

30
51

.8
44

78
.5
±

24
63

.8
57

15
.3
±

30
91

.7
55

15
.4
±

30
79

.3
57

19
.0
±

34
11

.1
37

67
.8
±

16
56

.0
33

64
.6
±

14
82

.1
O

rg
6

42
69

.9
±

56
08

.5
10

31
8.

5±
12

90
6.

8
45

80
.1
±

58
72

.7
10

34
3.

3±
12

89
0.

4
29

09
.3
±

13
96

.8
28

38
.7
±

14
15

.9
21

35
.7
±

10
39

.4
20

06
.8
±

78
1.

1
28

64
.0
±

13
68

.8
28

45
.3
±

14
01

.7
20

85
.0
±

89
1.

3
21

65
.6
±

74
3.

8
O

rg
7

46
48

.4
±

16
76

.9
46

56
.7
±

15
71

.9
46

60
.3
±

16
96

.1
46

63
.1
±

15
95

.4
50

65
.9
±

15
61

.5
49

15
.4
±

15
65

.3
46

49
.9
±

17
09

.4
46

75
.9
±

16
43

.7
44

58
.3
±

14
27

.5
43

94
.8
±

15
41

.3
44

70
.1
±

14
48

.1
43

66
.9
±

13
28

.7
av

eR
an

k
1.

29
1.

71
1.

21
1.

79
1.

21
1.

79
1.

07
1.

93
1.

36
1.

64
1.

43
1.

57
W

ilc
ox

on
0

0.
15

30
76

1
0.

01
62

55
0

0.
15

30
76

1
0.

00
06

70
0

0.
06

76
27

0
0.

90
31

98

176

APPENDIX D

Supplementary Experiments with Separate Test Set

We do not have spare testing sets and report the best performance determined on vali-
dation sets. As explained in Chapters 4 and 5, such experimental setting is rational and
consistent to previous SEE studies [109, 111, 135, 136], because SEE data sets are usually
small and the evaluation would be potentially invalid if further spare for testing sets.
To tackle this concern, we investigate three SEE data sets that are relatively large (i.e.,
Kitchenham, Org3, and Org4 according to table 2.1), for which the division for training,
validating, and testing sets would be more proper. Table D.1 lists the information of their
effort values.

Specifically, Chapters 5 evaluates SynB-RVM with respect to point performance (in
terms of MAE, MdAE, LSD, SA) and uncertain performance (in terms of hit rate and
relative width), concluding that SynB-RVM is a robust winner and rarely performs signif-
icantly worse than its competitors (see table 5.7). This appendix complements the results
of tables 5.2(a), 5.3, and 5.5 when spare testing sets are used.

The evaluation procedures are as follows. (1) Randomly holdout 90% data set to be
the training and validation sets, and the rest is spared as the testing set. (2) Determine
the best parameter setting of this method in terms of the average MAEs across 10 times
10-fold CV based on the training and validation sets. MAE is selected for being unbiased
towards over/under-estimation and for reflecting the actual error magnitude. (3) Build
the model with the best parameter settings using both training and validation sets. (4)
Evaluate the performance on the separate testing set. (5) Repeat steps (1)∼(4) for 30
times and report the mean performance. In fact, the experimental design is the same to
that of chapter 5 except that the performance is evaluated in spare testing sets.

D.1 Point Estimate With Spare Test Set
Point performance of SynB-RVM is compared to ATLM and RVM when spare testing
data is used. ATLM usually performs the best among the competing methods and thus
is chosen in the experiment; RVM is chosen for being the base learner of SynB-RVM.
Other point estimators are excluded for being obviously inferior to SynB-RVM according

177

Table D.1: Mean/Median of the actual effort values in Kitchenham, Org3 and Org4. Q1
represents the first quartile (the middle value between the smallest and the median effort
values), and Q3 represents the third quartile (the middle value between the median and
the highest value of the effort).

Data Set Mean (STD) Median (Q3 −Q1)
Kitchenham 3113.1 (9598) 1557 (2066)

Org3 2007.1 (2665.9) 1089.5 (1610)
Org4 5970.3 (8141.3) 3520 (5117)

Table D.2: Point prediction performance of SEE methods in terms of MAE with spare
testing sets. The reported values are the mean of 30 runs of 10-fold CV with their optimal
parameter settings determined by validation sets. Effect size across 30 runs of each data
set against the control method is computed. SynB-RVM 2Dhist is chosen as the control
method as in table 5.2. Cells in green (light grey)/orange (dark grey) indicate better or
worse performance against the control method with medium/large effect size.

Data Set SynB-RVM SpMn SynB-RVM 1Dhist SynB-RVM 2Dhist RVM ATLM
Kitchenham 1698.15 1687.50 1686.52 1725.89 1603.57

Org3 1013.48 1032.38 1042.45 1009.91 952.37
Org4 3747.95 3728.60 3710.21 3689.02 3808.66

to table 5.2. This complementary experiment aims to justify that the results in table 5.2
and the analyses in chapter 5 are valid regardless of not using spare testing sets.

Table D.2 lists the point performance in terms of MAE. For each data set, effect
size A12 of each SEE method against SynB-RVM 2Dhist across the 30 runs is computed
as we did in table 5.2 to quantify the performance superiority/inferiority. We can see
that SynB-RVM can achieve similar point performance as in table 5.2(a), indicating the
validation of the experimental results and analyses regarding point prediction in chapter 5.
Specially, SynB-RVM outperforms ATLM in Kitchenham and Org4 with large effect size,
while is inferior to ATLM in Org3 with large effect size; SynB-RVM outperforms RVM in
Kitchenham with medium effect size, while is inferior to RVM in Org3 with large effect
size. These statistical results are the same with those of table 5.2(a).

D.2 Uncertain Estimate With Spare Test Set
Uncertain performance of SynB-RVM is compared to RVM, EmpRVM, and EmpATLM
when spare testing data is used. EmpRVM is chosen for usually outperforming other
competing uncertain methods; RVM is chosen for being the base learner of SynB-RVM.

D.2.1 Evaluation on Hit Rate
It is not suitable to report median hit rate or to conduct statistical tests across the three
data sets for evaluating hit rate as we did in table 5.3. Instead, we report the average hit
rate and the percentages that succeed in hit rate across 30 runs for each data set.

178

Table D.3: Average hit rate across 30 runs for SynB-RVM, RVM, and EmpRVM at each
CL on each data set when using spare testing sets. Hit rate is measured in Eq. (5.9).
The values in the parentheses are the percentages (in 100%) of the 30 runs that succeed
in hit rate. Cells in yellow (light grey) highlight methods whose mean values succeed in
reaching or surpassing the corresponding hit rate.

(a) Average hit rate and its passing percentage across 30 runs on Kitchenham.
CL% SynB-RVM SpMn SynB-RVM 1Dhist SynB-RVM 2Dhist RVM EmpRVM
10.00 26.09(100.00) 25.59(100.00) 25.06(100.00) 16.62(100.00) 9.61(36.67)
20.00 47.83(100.00) 46.98(100.00) 46.59(100.00) 36.87(100.00) 20.46(73.33)
30.00 64.30(100.00) 63.79(100.00) 63.15(100.00) 56.00(100.00) 28.74(23.33)
40.00 73.81(100.00) 73.26(100.00) 72.94(100.00) 67.91(100.00) 38.32(13.33)
50.00 79.65(100.00) 79.39(100.00) 79.14(100.00) 76.74(100.00) 48.37(16.67)
60.00 83.59(100.00) 83.22(100.00) 82.99(100.00) 81.17(100.00) 58.90(40.00)
68.27 88.74(100.00) 88.30(100.00) 87.66(100.00) 84.64(100.00) 66.14(13.33)
70.00 89.69(100.00) 89.43(100.00) 88.97(100.00) 85.40(100.00) 67.86(3.33)
80.00 92.66(100.00) 92.62(100.00) 92.50(100.00) 90.25(100.00) 77.01(0.00)
90.00 94.07(100.00) 93.86(100.00) 93.79(100.00) 93.89(100.00) 87.22(0.00)
95.45 95.89(83.33) 95.94(83.33) 95.75(76.67) 95.24(36.67) 92.23(0.00)
99.73 96.58(0.00) 96.56(0.00) 96.54(0.00) 97.49(0.00) 96.23(0.00)

(b) Average hit rate and its passing percentage across 30 runs on Org3.
CL% SynB-RVM SpMn SynB-RVM 1Dhist SynB-RVM 2Dhist RVM EmpRVM
10.00 48.23(100.00) 47.26(100.00) 46.98(100.00) 28.91(100.00) 9.75(36.67)
20.00 68.33(100.00) 67.51(100.00) 67.43(100.00) 49.71(100.00) 19.32(30.00)
30.00 78.87(100.00) 78.19(100.00) 77.37(100.00) 60.99(100.00) 29.63(46.67)
40.00 83.95(100.00) 83.79(100.00) 83.72(100.00) 68.23(100.00) 38.85(33.33)
50.00 87.82(100.00) 86.93(100.00) 86.91(100.00) 75.56(100.00) 48.64(36.67)
60.00 91.54(100.00) 90.99(100.00) 90.49(100.00) 81.28(100.00) 58.77(13.33)
68.27 93.37(100.00) 93.31(100.00) 93.11(100.00) 84.09(100.00) 67.18(20.00)
70.00 93.70(100.00) 93.52(100.00) 93.40(100.00) 84.86(100.00) 68.37(16.67)
80.00 95.19(100.00) 95.00(100.00) 94.98(100.00) 88.17(100.00) 78.09(6.67)
90.00 96.81(100.00) 96.73(100.00) 96.40(100.00) 92.16(100.00) 89.26(36.67)
95.45 97.82(100.00) 97.63(100.00) 97.61(100.00) 95.33(50.00) 94.47(16.67)
99.73 98.95(6.67) 98.83(3.33) 98.70(3.33) 98.46(0.00) 98.42(0.00)

(c) Average hit rate and its passing percentage across 30 runs on Org4.
CL% SynB-RVM SpMn SynB-RVM 1Dhist SynB-RVM 2Dhist RVM EmpRVM
10.00 9.70(33.33) 9.67(33.33) 9.70(33.33) 10.27(53.33) 9.10(23.33)
20.00 19.21(30.00) 19.21(23.33) 19.13(20.00) 21.83(80.00) 18.33(10.00)
30.00 33.91(93.33) 33.96(93.33) 33.96(96.67) 39.73(100.00) 25.96(0.00)
40.00 49.73(100.00) 49.59(100.00) 49.54(100.00) 52.02(100.00) 34.62(0.00)
50.00 61.94(100.00) 62.27(100.00) 62.05(100.00) 63.72(100.00) 43.99(3.33)
60.00 68.96(100.00) 68.50(100.00) 68.50(100.00) 70.05(100.00) 53.99(0.00)
68.27 72.65(100.00) 72.60(100.00) 72.73(100.00) 75.38(100.00) 63.61(0.00)
70.00 73.83(100.00) 73.88(100.00) 73.96(100.00) 76.42(100.00) 64.89(0.00)
80.00 79.51(30.00) 79.62(43.33) 79.54(36.67) 81.34(90.00) 74.75(0.00)
90.00 83.74(0.00) 83.58(0.00) 83.72(0.00) 85.87(0.00) 83.80(0.00)
95.45 86.89(0.00) 86.80(0.00) 87.02(0.00) 89.02(0.00) 88.42(0.00)
99.73 93.01(0.00) 92.95(0.00) 93.25(0.00) 94.89(0.00) 95.44(0.00)

Table D.3 lists the average hit rate across 30 runs for each method and each data set.
The values in parentheses are the percentages of the 30 runs that succeed in reaching the
desired hit rate. We can see that RVM and all the three types of SynB-RVM can almost
always succeed in hit rate; while EmpRVM usually fails. The observation is consistent to
the results of table 5.3, indicating the validation of the evaluation in hit rate in chapter 5.

179

Table D.4: Relative width of similar hit rate of the three types of SynB-RVM, RVM, and
EmpRVM. The reported values are the mean of 30 runs of 10-fold CV.

(a) Similar hit rate of the investigating uncertain SEE methods in line with table 5.4.
Data Set B HitR SynB-RVM SpMn SynB-RVM 1Dhist SynB-RVM 2Dhist RVM EmpRVM

Kitchenham 0.9623 0.9589 0.9594 0.9654 0.9524 0.9623
Org3 0.9842 0.9895 0.9883 0.9870 0.9846 0.9842
Org4 0.9295 0.9301 0.9295 0.9325 0.9489 0.9544

(b) Relative width of similar hit rate of uncertain SEE methods in line with table 5.5.
Data Set SynB-RVM SpMn SynB-RVM 1Dhist SynB-RVM 2Dhist RVM EmpRVM

Kitchenham 3.1054 3.0470 4.1682 3.1504 2.5938
Org3 7.4060 8.0170 8.4530 7.5141 3.9485
Org4 3.2543 3.2509 3.2522 4.5481 5.9212

Particularly, the mean hit rates of EmpRVM almost always fail, showing its significant
inferiority to SynB-RVM.

D.2.2 Evaluation on Relative Width
We evaluate relative width the same procedures in section 5.4.2 except that no statistical
tests are conducted due to the small number of data sets.

Table D.4(a) lists the benchmark hit rates together with the chosen hit rates for the
SEE methods investigated. The chosen hit rates are obviously similar as desired for a fair
comparison of their relative width regardless of none statistical test. Table D.4(b) lists
the relative width in line with the chosen hit rate. We can see that the relative width
is similar to that of chapter 5 (see tables 5.6 and 5.5), indicating the validation of the
evaluation of uncertain prediction in chapter 5.

180

List of References

[1] Critical values for Friedman test. https://www.york.ac.uk/depts/maths/
tables/friedman.pdf. One citation in section B.2.

[2] Critical values for the Wilcoxon signed-ranks test. http://users.stat.ufl.edu/
˜winner/tables/wilcox_signrank.pdf. 2 citations in sections B.1 and B.1.

[3] Upper critical values of the F distribution. https://www.itl.nist.gov/div898/
handbook/eda/section3/eda3673.htm. One citation in section B.2.

[4] A. J. Albrecht and J. E. Gaffney. Software function, source lines of code, and
development effort prediction: A software science validation. IEEE Transactions
on Software Engineering (TSE), SE-9(6):639–648, 1983. One citation in section
2.4.1.

[5] M. Algabri, F. Saeed, H. Mathkour, and N. Tagoug. Optimization of soft cost esti-
mation using genetic algorithm for NASA software projects. In National Symposium
on Information Technology: Towards New Smart World, pages 1–4, Feb 2015. One
citation in section 2.3.

[6] S. Aljahdali and A. F. Sheta. Software effort estimation by tuning COCOMO model
parameters using differential evolution. In ACS/IEEE International Conference on
Computer Systems and Applications, pages 1–6, May 2010. One citation in section
2.3.

[7] S. Aljahdali, A. F. Sheta, and N. C. Debnath. Estimating software effort and func-
tion point using regression, support vector machine and artificial neural networks
models. In IEEE/ACS International Conference of Computer Systems and Appli-
cations (AICCSA), pages 1–8, 2015. 5 citations in sections 1, 3.3.3, 3.4.1, A.3,
and A.6.

181

https://www.york.ac.uk/depts/maths/tables/friedman.pdf
https://www.york.ac.uk/depts/maths/tables/friedman.pdf
http://users.stat.ufl.edu/~winner/tables/wilcox_signrank.pdf
http://users.stat.ufl.edu/~winner/tables/wilcox_signrank.pdf
https://www.itl.nist.gov/div898/handbook/eda/section3/eda3673.htm
https://www.itl.nist.gov/div898/handbook/eda/section3/eda3673.htm

[8] E. Alpaydin. Techniques for combining multiple learners. In Engineering Intelligent
Systems, pages 6–12, 1998. 3 citations in sections 5.1, 5.2, and A.7.

[9] L. Angelis and I. Stamelos. A simulation tool for efficient analogy based cost es-
timation. Empirical Software Engineering (ESE), 5(1):35–68, 2000. 6 citations in
sections 2.2.1, 3.3.3, 5.3.3, 5.3.4, 5.4.2, and A.4.

[10] L. Angelis and I. Stamelos. Reply to comments by M. Jørgensen, on the Paper: ‘A
Simulation Tool for Efficient Analogy Based Cost Estimation’; by L. Angelis and I.
Stamelos, Published in Empirical Software Engineering, 5, 35-68 (2000). Empirical
Software Engineering (ESE), 7(4):377–381, 2002. One citation in section 2.2.1.

[11] A. Arcuri and G. Fraser. On parameter tuning in search based software engineer-
ing. In Symposium on Search-Based Software Engineering (SSBSE), pages 33–47,
Szeged, Hungary, 2011. 2 citations in sections 2.3 and 3.4.1.

[12] Andrea Arcuri and Lionel Briand. A practical guide for using statistical tests to
assess randomized algorithms in software engineering. In International Conference
on Software Engineering (ICSE), pages 1–10, 2011. 4 citations in sections 3.4.1,
5.4.1, B.3, and B.3.

[13] J. Armstrong. “The Forecasting Dictionary,” in J. S. Armstrong (Ed.), Principles
of Forecasting: a Handbook for Researchers and Practitioners. Kluwer, 2001. 2
citations in sections 2.4.3 and 4.2.

[14] Adelchi Azzalini. The Skew-Normal and Related Families. Institute of Mathematical
Statistics Monographs. Cambridge University Press, 2013. 3 citations in sections
5.2.2, 5.7.2, and 7.2.4.

[15] Mohammad Azzeh, Daniel Neagu, and Peter I. Cowling. Analogy-based software
effort estimation using fuzzy numbers. Journal of Systems and Software (JSS),
84(2):270 – 284, 2011. One citation in section A.4.

[16] Paula B., L. Torgo, and R. Ribeiro. SMOGN: A pre-processing approach for imbal-
anced regression. In First International Workshop on Learning with Imbalanced Do-
mains: Theory and Applications, volume 74 of Machine Learning Research (MLR),
pages 36–50, ECML-PKDD, Skopje, Macedonia, 2017. One citation in section 2.1.3.

182

[17] A. Bakir, B. Turhan, and A. Bener. A comparative study for estimating software
development effort intervals. Software Quality Journal (SQJ), 19(3):537–552, 2011.
One citation in section 2.2.3.

[18] S. Barua, M. M. Islam, X. Yao, and K. Murase. MWMOTE–Majority weighted mi-
nority oversampling technique for imbalanced data set learning. IEEE Transactions
on Knowledge and Data Engineering, 26(2):405–425, 2014. One citation in section
2.1.1.

[19] B. Baskeles, B. Turhan, and A. Bener. Software effort estimation using machine
learning methods. In International symposium on Computer and Information Sci-
ences, pages 1–6, 2007. 2 citations in sections 1 and 4.1.

[20] Gustavo E. A. P. A. Batista, Ronaldo C. Prati, and Maria Carolina Monard. A
study of the behavior of several methods for balancing machine learning training
data. ACM SIGKDD Explorations Newsletter - Special Issue on Learning from
Imbalanced Datasets, 6(1):20–29, 2004. One citation in section 2.1.1.

[21] Eric Bauer and Ron Kohavi. An empirical comparison of voting classification algo-
rithms: Bagging, boosting, and variants. Machine Learning, 1999. One citation in
section A.7.

[22] Henrik Bengtsson. R.matlab: Read and write mat files and call MATLAB from
within R. R package version 3.6.0-9000. https://github.com/HenrikBengtsson/
R.matlab, 2016. 2 citations in sections 3.3.3 and A.1.2.

[23] S. Bibi, I. Stamelos, and E. Angelis. Software cost prediction with predefined interval
estimates. In Software Measurement European Forum, pages 237–246, 2004. One
citation in section 2.2.3.

[24] Christopher Bishop. Neural Networks for Pattern Recognition. Oxford University
Press, Inc., New York, NY, USA, 1995. One citation in section A.6.

[25] Christopher Bishop. Pattern Recgonition and Machine Learning. Springer, 2006. 4
citations in sections 5.2.2, A.2, A.2, and A.2.

183

https://github.com/HenrikBengtsson/R.matlab
https://github.com/HenrikBengtsson/R.matlab

[26] B. W. Boehm. Software engineering economics. IEEE Transactions on Software
Engineering (TSE), 10(1):4–21, 1984. 4 citations in sections (document), 1, 2.4.1,
and 2.4.

[27] D. Dennis Boos and L.A. Stefanski. Essential Statistical Inference: Theory and
Methods. Springer Texts in Statistics. Springer New York, 2013. One citation in
section 3.2.1.

[28] P. Braga and A. Oliveira. Software effort estimation using machine learning tech-
niques with robust confidence intervals. In International Conference on Tools with
Artificial Intelligence, pages 181–185, 2007. One citation in section 2.2.2.

[29] P. Braga, A. Oliveira, G. Ribeiro, and S. Meira. Bagging predictors for estimation
of software project effort. In International Joint Conference on Neural Networks
(IJCNN), pages 1595–1600, 2007. 3 citations in sections 4.3.3, A.7, and B.

[30] P. Branco. Resampling approach for regression tasks under imbalanced domains.
Master’s thesis, Department of Computer Science, Faculty of Science, University of
Porto, 2014. Master thesis. One citation in section 2.1.3.

[31] L. Breiman, J. Friedman, C.J. Stone, and R.A. Olshen. Classification and Regres-
sion Trees. The Wadsworth and Brooks-Cole statistics-probability series. Taylor &
Francis, 1984. One citation in section A.5.

[32] Leo Breiman. Bagging predictors. Journal of Machine Learning, 24(2):123–140,
1996. 2 citations in sections 4.3.3 and A.7.

[33] L. Briand, K. Emam, and F. Bomarius. Cobra: A hybrid method for software cost
estimation, benchmarking, and risk assessment. In International Conference on
Software Engineering (ICSE), pages 390–399, 1998. One citation in section 2.2.1.

[34] L. Briand, K. Emam, D. Surmann, I. Wieczorek, and K. D. Maxwell. An assessment
and comparison of common software cost estimation modeling techniques. In In-
ternational Conference on Software Engineering (ICSE), pages 313–323, 1999. One
citation in section A.5.

184

[35] L. Briand, T. Langley, and I. Wieczorek. A replicated assessment and comparison of
common software cost modeling techniques. In International Conference on Software
Engineering (ICSE), pages 377–386, 2000. 3 citations in sections A.1.1, A.4, and A.5.

[36] G. Brown, J. Wyatt, R. Harris, and X. Yao. Diversity creation methods: A survey
and categorisation. Information Fusion, 6(1):5 – 20, 2005. One citation in section
A.7.

[37] M. Cartwright, M. Shepperd, and Q. Song. Dealing with missing software project
data. In International Workshop on Enterprise Networking and Computing in
Healthcare Industry, pages 154–165, 2003. 3 citations in sections 4, 4, and 3.

[38] A. Chandra and X. Yao. Ensemble learning using multi-objective evolutionary
algorithms. Journal of Mathematical Modelling and Algorithms, 5(4):417–445, 2006.
One citation in section A.7.

[39] N. Chawla, K. Bowyer, L. Hall, and W. Kegelmeyer. SMOTE: Synthetic minor-
ity over-sampling technique. Journal of Artificial Intelligence Research, 6:321–357,
2002. 7 citations in sections (document), 2.1.1, 2.1.1, 1, 2.1.1, 2.1.2, and 2.1.4.

[40] Zhihao Chen, Tim Menzies, Dan Port, and Barry Boehm. Feature subset selection
can improve software cost estimation accuracy. In International Conference on
Predictor Models in Software Engineering (PROMISE), pages 1–6, 2005. 2 citations
in sections 3.2.2 and 5.6.1.

[41] Vladimir Cherkassky and Yunqian Ma. Practical selection of SVM parameters and
noise estimation for SVM regression. Neural Networks, 17(1):113 – 126, 2004. 6
citations in sections 3.3.3, 3.3.4, 3.4.1, 5.3.3, 5.3.5, and A.3.

[42] Bodin Chinthanet, Passakorn Phannachitta, Yasutaka Kamei, Pattara Leelaprute,
Arnon Rungsawang, Naoyasu Ubayashi, and Kenichi Matsumoto. A review and
comparison of methods for determining the best analogies in analogy-based software
effort estimation. In Annual ACM Symposium on Applied Computing, pages 1554–
1557, 2016. One citation in section A.4.

[43] Nan-Hsing Chiu and Sun-Jen Huang. The adjusted analogy-based software effort
estimation based on similarity distances. Journal of Systems and Software (JSS),
80(4):628 – 640, 2007. One citation in section A.1.1.

185

[44] Nan-Hsing Chiu and Sun-Jen Huang. The adjusted analogy-based software effort
estimation based on similarity distances. Journal of Systems and Software (JSS),
80(4):628 – 640, 2007. One citation in section A.4.

[45] Sunita Chulani, B. Boehm, and B. Steece. Bayesian analysis of empirical soft-
ware engineering cost models. IEEE Transactions on Software Engineering (TSE),
25(4):573–583, 1999. One citation in section 2.2.4.

[46] R. Coe. It’s the effect size, stupid: What effect size is and why it is important. http:
//www.cem.org/attachments/ebe/ESguide.pdf, 2002. 3 citations in sections B,
B.3, and B.3.

[47] Vachik S. Dave and Kamlesh Dutta. Neural network based models for software
effort estimation: A review. Artificial Intelligence Review, 42(2):295–307, 2014.
One citation in section A.6.

[48] I. F. de Barcelos Tronto, J. D. S. da Silva, and N. Sant’Anna. Comparison of
artificial neural network and regression models in software effort estimation. In
International Joint Conference on Neural Networks (IJCNN), pages 771–776, 2007.
3 citations in sections 6.3.1, A.1.1, and A.6.

[49] K. Dejaeger, W. Verbeke, D. Martens, and B. Baesens. Data mining techniques for
software effort estimation: A comparative study. IEEE Transactions on Software
Engineering (TSE), 38(2):375–397, 2012. 8 citations in sections 1, 1.1.1, 1.1.2, 2,
2.3, 6.3.1, A.1.1, and A.6.

[50] Janez Demšar. Statistical comparisons of classifiers over multiple data sets. Jour-
nal of Machine Learning Research (JMLR), 7:1–30, 2006. 12 citations in sections
(document), 3.4.1, 5.4.1, 5.5.3, B, B.1, B.1, B.2, B.2, B.2, B.3, and B.2.

[51] Kitchenham doi. https://doi.org/10.5281/zenodo.268457, 2017. One citation
in section 2.4.1.

[52] Maxwell doi. https://doi.org/10.5281/zenodo.268461, 2009. One citation in
section 2.4.1.

[53] Nasa93 doi. https://doi.org/10.5281/zenodo.268419, 2008. One citation in
section 2.4.1.

186

http://www.cem.org/attachments/ebe/ESguide.pdf
http://www.cem.org/attachments/ebe/ESguide.pdf
https://doi.org/10.5281/zenodo.268457
https://doi.org/10.5281/zenodo.268461
https://doi.org/10.5281/zenodo.268419

[54] D. Drown, T. Khoshgoftaar, and N. Seliya. Evolutionary sampling and software
quality modeling of high-assurance systems. IEEE Transactions on Systems, Man,
and Cybernetics, 39(5):1097–1107, 2009. One citation in section 2.1.2.

[55] H. Drucker, C. Burges, L. Kaufman, A. Smola, and V. Vapnik. Support vector
regression machines. In Neural Information Processing Systems (NIPS), pages 155–
161, 1996. 6 citations in sections (document), 3.3.3, 5.3.3, A.3, A.2, and A.3.

[56] H. Drucker, C. Cortes, D. Jackel, Y. LeCun, and V. Vapnik. Boosting and other
ensemble methods. Neural Computation, 6(6):1289–1301, 1994. One citation in
section A.7.

[57] Mahmoud O. Elish. Assessment of voting ensemble for estimating software develop-
ment effort. In IEEE Symposium on Computational Intelligence and Data Mining
(CIDM), pages 316–321, 2013. One citation in section A.7.

[58] Andrew Estabrooks. A multiple resampling method for learning from imbalanced
data sets. Computational Intelligence, pages 18–36, 2004. One citation in section
2.1.1.

[59] A. Faul and M. Tipping. Analysis of sparse Bayesian learning. In Advances in Neural
Information Processing Systems 14, pages 383–389. MIT Press, 2001. 4 citations in
sections 3.3.3, A.2, A.2, and A.2.

[60] E. C. Fieller and E. S. Pearson. Tests for rank correlation coefficients: I. Biometrika,
49(1-2):185–191, 1962. One citation in section 5.5.4.

[61] G.R. Finnie, G.E. Wittig, and J-M. Desharnais. A comparison of software effort
estimation techniques: Using function points with neural networks, case-based rea-
soning and regression models. Journal of Systems and Software (JSS), 39(3):281 –
289, 1997. One citation in section A.6.

[62] Gary William Flake and Steve Lawrence. Efficient SVM regression training with
SMO. Machine Learning, 46(1):271–290, 2002. One citation in section A.3.

[63] T. Foss, E. Stensrud, B. Kitchenham, and I. Myrtveit. A simulation study of the
model evaluation criterion MMRE. IEEE Transactions on Software Engineering

187

(TSE), 29:985–995, 2003. 7 citations in sections 2.4.2, 2.4.2, 2.4.2, 2.4.2, 2.4.2,
4.3.2, and 6.1.

[64] J. Cuadrado Gallego, D. Rodriguez, M. Sicilia, M. Rubio, and A. Cresp. Software
project effort estimation based on multiple parametric models generated through
data clustering. Journal of Computer Science and Technology, 22(3), 2007. One
citation in section 3.4.2.

[65] Farhad Soleimanian Gharehchopogh and Amir Pourali. A new approach based
on continuous genetic algorithm in software cost estimation. Journal of Scientific
Research and Development, 2(4):87–94, 2015. One citation in section 2.3.

[66] Katarina Grolinger, Besa Muslimi, Miriam Capretz, and Mark Benko. Eef-cas: An
effort estimation framework with customizable attribute selection. Advancements
in Computing Technology, 5(13):14–33, 2013. One citation in section 1.

[67] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten. The
weka data mining software: An update. SIGKDD Explorations, 11(1):10–18, 2009.
2 citations in sections 4.3.3 and A.5.

[68] Hui Han, Wen-Yuan Wang, and Bing-Huan Mao. Borderline-SMOTE: A new over-
sampling method in imbalanced data sets learning. In Advances in Intelligent Com-
puting, pages 878–887, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg. One
citation in section 2.1.1.

[69] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning:
Data Mining, Inference, and Prediction. Springer, 2001. 6 citations in sections 1.1.1,
3.3.2, 4.3.2, 5.3.2, A.4, and A.5.

[70] Haibo He, Yang Bai, E. A. Garcia, and Shutao Li. Adasyn: Adaptive synthetic
sampling approach for imbalanced learning. In 2008 IEEE International Joint Con-
ference on Neural Networks (IEEE World Congress on Computational Intelligence),
pages 1322–1328, June 2008. 2 citations in sections 2.1.1 and 2.1.1.

[71] Haibo He and Edwardo A. Garcia. Learning from imbalanced data. IEEE Transac-
tion on Knowledge and Data Engineering, 21(9):1263–1284, 2009. One citation in
section 2.1.1.

188

[72] S. Holm. A simple sequentially rejective multiple test procedure. Scandinavian
Journal of Statistics, 6:65–70, 1979. One citation in section B.2.

[73] Mohamed Hosni, Ali Idri, Alain Abran, and Ali Bou Nassif. On the value of pa-
rameter tuning in heterogeneous ensembles effort estimation. Soft Computing, 2017.
One citation in section 2.3.

[74] Robert T. Hughes. Expert judgement as an estimating method. Information and
Software Technology (IST), 38(2):67 – 75, 1996. One citation in section 1.

[75] Ali Idri, Fatima A. Amazal, and Alain Abran. Analogy-based software development
effort estimation: A systematic mapping and review. Information and Software
Technology (IST), 58:206 – 230, 2015. One citation in section A.4.

[76] Ali Idri, Mohamed Hosni, and Alain Abran. Systematic literature review of ensemble
effort estimation. Journal of Systems and Software (JSS), 118:151 – 175, 2016. 3
citations in sections 5.3.3, A.6, and A.7.

[77] ISBSG. The international software benchmarking standards group. http://www.
isbsg.org, 2011. 5 citations in sections 2.4.1, 2.4.1, 3.3.1, 4.3.1, and 2.

[78] R. Jeffery, M. Ruhe, and I. Wieczorek. Using public domain metrics to estimate
software development effort. In International Software Metrics Symposium, pages
16–27, 2001. 2 citations in sections A.4 and A.5.

[79] D. N. Joanes and C. A. Gill. Comparing measures of sample skewness and kurtosis.
Journal of the Royal Statistical Society. Series D (The Statistician), 47(1):183–189,
1998. One citation in section A.1.2.

[80] N. L. Johnson and S. Kotz. Distributions in Statistics: Continuous Univariate
Distributions. Vol. 1,2. Boston etc.: Houghton Mifflin Company. I: XIV, 300 p.; II:
XIII, 306, 1970. 2 citations in sections 5.7.2 and 7.2.4.

[81] M. Jørgensen. Comments on ‘A Simulation Tool for Efficient Analogy Based Cost
Estimation’, by L. Angelis and I. Stamelos, Published in Empirical Software En-
gineering, 5, 35-68 (2000). Empirical Software Engineering (ESE), 7(4):375–376,
2002. One citation in section 2.2.1.

189

http://www.isbsg.org
http://www.isbsg.org

[82] M. Jorgensen. Realism in assessment of effort estimation uncertainty: It matters
how you ask. IEEE Transactions on Software Engineering (TSE), 30(4):209–217,
2004. One citation in section 4.1.

[83] M. Jørgensen. A review of studies on expert estimation of software development
effort. Journal of Systems and Software (JSS), 70(1):37 – 60, 2004. 2 citations in
sections 1 and 6.1.

[84] M. Jørgensen. Evidence-based guidelines for assessment of software development
cost uncertainty. IEEE Transactions on Software Engineering (TSE), 32(11):942–
954, 2005. 6 citations in sections 1.1.2, 2.4.3, 3.4.2, 4.1, 4.4.2, and 5.4.2.

[85] M. Jørgensen. Forecasting of software development work effort: Evidence on expert
judgement and formal models. International Journal of Forecasting, 23(3):449 –
462, 2007. One citation in section 1.

[86] M. Jørgensen. The influence of selection bias on effort overruns in software develop-
ment projects. Information and Software Technology (IST), 55(9):1640–1650, 2013.
One citation in section 2.4.2.

[87] M. Jørgensen, U. Indahl, and D. Sjøberg. Software effort estimation by analogy and
“regression toward the mean”. Journal of Systems and Software (JSS), 68(3):253–
262, 2003. 3 citations in sections 3.3.3, 5.3.3, and A.4.

[88] M. Jørgensen and M. Kjetil. How large are software cost overruns? a review of the
1994 CHAOS report. Information and Software Technology (IST), 48(4):297–301,
2006. One citation in section 2.4.2.

[89] M. Jørgensen and M. Shepperd. A systematic review of software development cost
estimation studies. IEEE Transactions on Software Engineering (TSE), 33(1):33–
53, 2007. 4 citations in sections 1, 1.1.4, A.6, and B.

[90] M. Jørgensen and K. Sjøberg. An effort prediction interval approach based on the
empirical distribution of previous estimation accuracy. Information and Software
Technology (IST), 45(3):123 – 136, 2003. 2 citations in sections 2.2.2 and 5.3.4.

[91] M. Jørgensen, K. H. Teigen, and K. Molokken. Better sure than safe? Overconfi-
dence in judgement based software development effort prediction intervals. Journal

190

of Systems and Software (JSS), 70:79–93, 2004. 5 citations in sections 1.1.2, 2.4.3,
3.4.2, 4.1, and 5.4.2.

[92] Y. Kamei, A. Monden, S. Matsumoto, T. Kakimoto, and K. Matsumoto. The
effects of over and under sampling on fault-prone module detection. In International
Symposium on Empirical Software Engineering and Measurement (ESEM 2007),
pages 196–204, 2007. 2 citations in sections 2.1.1 and 2.1.2.

[93] Yasutaka Kamei, Jacky Wai Keung, Akito Monden, and Ken-ichi Matsumoto. An
oversampling method for analogy-based software effort estimation. In International
Symposium on Empirical Software Engineering and Measurement (ESEM), pages
312–314, 2008. 8 citations in sections 2.1.4, 2.5, 3.2, 3.4, 3.4.3, 3.4.3, 3.5, and 7.1.1.

[94] J. W. Keung, B. A. Kitchenham, and D. R. Jeffery. Analogy-x: Providing statistical
inference to analogy-based software cost estimation. IEEE Transactions on Software
Engineering (TSE), 34(4):471–484, July 2008. One citation in section A.4.

[95] V. Khatibi Bardsiri, D. N. Jawawi, S. Z. Hashim, and E. Khatibi. A flexible method
to estimate the software development effort based on the classification of projects
and localization of comparisons. Empirical Software Engineering (ESE), 19(4):857–
884, 2014. One citation in section A.1.2.

[96] Thanh Tung Khuat and My Hanh Le. Optimizing parameters of software effort es-
timation models using directed artificial bee colony algorithm. Informatica, 40:427–
436, 2016. One citation in section 2.3.

[97] B. Kitchenham and S. Linkman. Estimates, uncertainty, and risk. IEEE Software,
14(3):69–74, 1997. 2 citations in sections 1.1.3 and 4.1.

[98] B. Kitchenham, E. Mendes, and G. Travassos. Cross versus within-company cost es-
timation studies: A systematic review. IEEE Transactions on Software Engineering
(TSE), 33(5):316 – 329, 2007. One citation in section 6.1.

[99] B. Kitchenham and Emilia Mendes. Why comparative effort prediction studies may
be invalid. In International Conference on Predictor Models in Software Engineering
(PROMISE), pages 4:1–4:5, 2009. 7 citations in sections 1, 3.3.3, 5.4.1, 5.6.1, A.1,
A.1.1, and A.1.2.

191

[100] B. Kitchenham, S. L. Pfleeger, B. McColl, and S. Eagan. An empirical study of
maintenance and development estimation accuracy. Journal of Systems and Soft-
ware (JSS), 64(1):57–77, 2002. 2 citations in sections 2.4.1 and 1.

[101] B. Kitchenham, L. Pickard, S. MacDonell, and M. Shepperd. What accuracy statis-
tics really measure. IEE Proceedings - Software Engineering, 148(3):81–85, 2001.
One citation in section 2.4.2.

[102] B. Kitchenham, L. M. Pickard, S. Linkman, and P. W. Jones. Modeling software
bidding risks. IEEE Transactions on Software Engineering (TSE), 29(6):542–554,
2003. 2 citations in sections 1 and 4.1.

[103] M. Klas, A. Trendowicz, A. Wickenkamp, J. Munch, N. Kikuchi, and Y. Ishigai. The
use of simulation techniques for hybrid software cost estimation and risk analysis.
In Advances in computers, volume 74 of Software Development, pages 115–174.
Academic Press, 2008. 3 citations in sections 1.1.3, 4.1, and 7.1.2.

[104] M. Klas, A. Trendowizc, Y. Ishigai, and H. Nakao. Handling estimation uncertainty
with bootstrapping: Empirical evaluation in the context of hybrid prediction meth-
ods. In International Symposium on Empirical Software Engineering and Measure-
ment (ESEM), pages 245–254, 2011. 6 citations in sections 2.2.1, 2.4.3, 4.1, 4.4.2,
5.3.4, and 5.4.2.

[105] E. Kocaguneli, A. Bener, and Y. Kultur. Combining multiple learners induced on
multiple datasets for software effort prediction. In International Symposium on
Software Reliability Engineering, Mysuru, India, 2009. One citation in section B.

[106] E. Kocaguneli, B. Cukic, and H. Lu. Predicting more from less: Synergies of learn-
ing. In Realizing Artificial Intelligence Synergies in Software Engineering (RAISE),
San Francisco, CA, USA, 2013. 3 citations in sections 1.1.1, 3.1, and 7.1.1.

[107] E. Kocaguneli, B. Cukic, T. Menzies, and H. Lu. Building a second opinion: Learn-
ing cross-company data. In International Conference on Predictor Models in Soft-
ware Engineering (PROMISE), Baltimore, USA, 2013. 3 citations in sections 1.1.1,
3.1, and 7.1.1.

192

[108] E. Kocaguneli and T. Menzies. Software effort models should be assessed via leave-
one-out validation. Journal of Systems Software, 86(7):1879–1890, July 2013. One
citation in section 3.3.2.

[109] E. Kocaguneli, T. Menzies, A. Bener, and J. W. Keung. Exploiting the essential
assumptions of analogy-based effort estimation. IEEE Transactions on Software
Engineering (TSE), 38(2):425–438, 2012. 6 citations in sections 1.1.1, 3.1, 3.3.2,
A.4, A.5, and D.

[110] E Kocaguneli, T. Menzies, and J. Keung. On the value of ensemble effort estima-
tion. IEEE Transactions on Software Engineering (TSE), 38:1403âĂŞ1416, 2012. 3
citations in sections 1, A.5, and A.7.

[111] E. Kocaguneli, T. Menzies, J. Keung, D. Cok, and R. Madachy. Active learning
and effort estimation: Finding the essential content of software effort estimation
data. IEEE Transactions on Software Engineering (TSE), 39(8):1040–1053, 2013.
6 citations in sections 3.3.2, 3.3.3, A.4, A.4, A.5, and D.

[112] E. Kocaguneli, T. Menzies, and J. W. Keung. Kernel methods for software effort
estimation. Empirical Software Engineering (ESE), 18:1–24, 2013. One citation in
section 2.3.

[113] E. Kocaguneli, T. Menzies, and E. Mendes. Transfer learning in effort estimation.
Empirical Software Engineering (ESE), 20(3):813–843, 2015. One citation in section
A.4.

[114] E. Kocaguneli and T.J. Menzies. Exploiting the essential assumptions of analogy-
based effort estimation. IEEE Transactions on Software Engineering (TSE),
38(2):425–438, 2012. 4 citations in sections 3.3.3, 5.3.3, A.4, and A.5.

[115] Ron Kohavi. A study of cross-validation and bootstrap for accuracy estimation
and model selection. In International Joint Conference on Artificial Intelligence
(IJCAI), pages 1137–1143, 1995. One citation in section 3.3.2.

[116] Yigit Kultur, Burak Turhan, and Ayse Basar Bener. Enna: Software effort estima-
tion using ensemble of neural networks with associative memory. In ACM SIGSOFT
International Symposium on Foundations of Software Engineering, pages 330–338,
2008. 4 citations in sections 1.1.1, 3.1, 7.1.1, and A.7.

193

[117] K. Langsari and R. Sarno. Optimizing COCOMO II parameters using particle
swarm method. In International Conference on Science in Information Technology,
pages 29–34, Oct 2017. One citation in section 2.3.

[118] Safae Laqrichi, Francois Marmier, Didier Gourc, and Jean Nevoux. Integrating
uncertainty in software effort estimation using bootstrap based neural networks.
IFAC Symposium on Information Control Problems in Manufacturing, 48(3):954–
959, 2015. 2 citations in sections 2.2.1 and 5.3.4.

[119] Sauchi S. Lee. Regularization in skewed binary classification. Computational Statis-
tics, 14(2):277–292, 1999. 2 citations in sections 2.1.1 and A.2.

[120] Sauchi S. Lee. Noisy replication in skewed binary classification. Computational
Statistics and Data Analysis, 34(2):165–191, 2000. One citation in section 2.1.1.

[121] N. Leech and A. Onwuegbuzie. A call for greater use of non-parametric statis-
tics. Technical report, US Department Education, 2002. 2 citations in sections B.3
and B.3.

[122] Y. Li, M. Xie, and T. Goh. A study of project selection and feature weighting for
analogy based software cost estimation. Journal of Systems and Software (JSS),
82(2):241 – 252, 2009. 5 citations in sections 3.2.2, 3.3.3, 5.3.3, 5.6.1, and A.4.

[123] Y. Li, M. Xie, and T. Goh. A study of the non-linear adjustment for analogy based
software cost estimation. Empirical Software Engineering (ESE), 14(6):603–643,
2009. One citation in section A.4.

[124] Stephen G. MacDonell and Martin Shepperd. Combining techniques to optimize
effort predictions in software project management. Journal of Systems and Software
(JSS), 66(2):91 – 98, 2003. One citation in section A.1.1.

[125] C. Mair and M. Shepperd. The consistency of empirical comparisons of regression
and analogy-based software project cost prediction. In International Symposium on
Empirical Software Engineering, pages 491 – 500, 2005. 3 citations in sections 3.4.1,
6.1, and A.4.

194

[126] H. B. Mann and D. R. Whitney. On a test of whether one of two random vari-
ables is stochastically larger than the other. The Annals of Mathematical Statistics,
18(1):50–60, 1947. One citation in section B.3.

[127] K. Maxwell. Applied Statistics for Software Managers. Prentice Hall PTR, 2002.
One citation in section 2.4.1.

[128] E. Mendes and N. Mosley. Bayesian network models for web effort prediction: A
comparative study. IEEE Transactions on Software Engineering (TSE), 34(6):723–
737, 2008. One citation in section 2.2.4.

[129] Solomon Mensah, Jacky Keung, Michael Bosu, and Kwabena Bennin. Duplex out-
put software effort estimation model with self-guided interpretation. Information
and Software Technology, 94:1 – 13, 2018. One citation in section 2.2.3.

[130] Krishna R. Pryor D. Menzies, T. The SEACRAFT repository of empirical software
engineering data. https://zenodo.org/communities/seacraft, 2017. 3 citations
in sections 2.4.1, 3.3.1, and 4.3.1.

[131] T. Menzies, Z. Chen, J. Hihn, and K. Lum. Selecting best practices for effort
estimation. IEEE Transactions on Software Engineering (TSE), 32(11):883–895,
2006. One citation in section 1.

[132] T. Menzies, J. Greenwald, and A. Frank. Data mining static code attributes to learn
defect predictors. IEEE Transactions on Software Engineering (TSE), 33(1):2–13,
2007. One citation in section 3.3.1.

[133] T. Menzies, R. Krishna, and D. Pryor. The PROMISE repository of empirical
software engineering data. http://openscience.us/repo. North Carolina State
University, Department of Computer Science, 2015. One citation in section 1.

[134] T. Menzies and M. Shepperd. Special issue on repeatable results in software engi-
neering prediction. Empirical Software Engineering (ESE), 17:1–17, 2012. 2 cita-
tions in sections 2.3 and 6.1.

[135] L. Leandro Minku and Xin Yao. Software effort estimation as a multi-objective
learning problem. ACM Transactions on Software Engineering and Methodology
(TOSEM), 22, 2013. 6 citations in sections 2.4.2, 5.4.1, 6.1, A.1.2, A.5, and D.

195

https://zenodo.org/communities/seacraft
http://openscience.us/repo.

[136] Leandro L. Minku and X. Yao. Ensembles and locality: Insight on improving
software effort estimation. Information and Software Technology (IST), 55(8):1512–
1528, 2012. 23 citations in sections 1, 1.1.1, 1.1.4, 2.3, 2.4.1, 2.4.1, 3.1, 3.3.3, 3.4.2,
4.3.3, 5.3.3, 5.6.1, 6.1, 6.2.1, 6.2.2, 6.2.3, 6.3.1, A.2, A.5, A.6, A.7, B, and D.

[137] Leandro L. Minku and Xin Yao. A principled evaluation of ensembles of learning
machines for software effort estimation. In International Conference on Predictor
Models in Software Engineering (PROMISE), pages 9:1–9:10, 2011. One citation in
section A.7.

[138] Leandro L. Minku and Xin Yao. Can cross-company data improve performance in
software effort estimation? In International Conference on Predictive Models in
Software Engineering (PROMISE), pages 69–78. ACM, 2012. 2 citations in sections
4 and 6.2.1.

[139] Leandro L. Minku and Xin Yao. How to make best use of cross-company data in
software effort estimation? In International Conference on Software Engineering
(ICSE), pages 446–456, New York, NY, USA, 2014. One citation in section A.5.

[140] Michinari Momma and Kristin Bennett. A pattern search method for model se-
lection of support vector regression. In International Conference on Data Mining,
pages 261–274, 2002. 2 citations in sections 3.3.4 and 5.3.5.

[141] I. Myrtveit and E. Stensrud. A controlled experiment to assess the benefits of
estimating with analogy and regression models. IEEE Transactions on Software
Engineering (TSE), 25(4):510–525, July 1999. One citation in section A.4.

[142] I. Myrtveit, E. Stensrud, and M. Shepperd. Reliability and validity in comparative
studies of software prediction models. IEEE Transactions on Software Engineering
(TSE), 31(5):380–391, 2005. 2 citations in sections 2.4.2 and 2.4.2.

[143] R. M. Neal. Bayesian Learning for Neural Networks. Springer, 1996. One citation
in section A.2.

[144] J. Neter, M. Kutner, C. Nachtsheim, and W. Wasserman. Applied Linear Statistical
Models. McGraw-Hill, 1996. One citation in section A.1.1.

196

[145] NIST. Engineering statistics, NIST/SEMATECH e-handbook of statistical meth-
ods. http://www.itl.nist.gov/div898/handbook/, 2012. 4 citations in sections
2.2.2, 5.7.2, 7.2.4, and A.2.

[146] Adriano Oliveira. Estimation of software project effort with support vector regres-
sion. Neurocomputing, 69(13):1749 – 1753, 2006. 5 citations in sections 3.3.3, 3.4.1,
5.3.3, A.3, and A.3.

[147] Adriano Oliveira, Petronio Braga, Ricardo Lima, and Marcio Cornelio. GA-based
method for feature selection and parameters optimization for machine learning re-
gression applied to software effort estimation. Information and Software Technology
(IST), 52(11):1155 – 1166, 2010. Special Section on Best Papers PROMISE 2009.
One citation in section 2.3.

[148] L. Pelayo and S. Dick. Applying novel resampling strategies to software defect
prediction. In Annual Meeting of the North American Fuzzy Information Processing
Society, pages 69–72, 2007. One citation in section 2.1.2.

[149] C. Pendharkar, H. Subramanian, and A. Rodger. A probabilistic model for pre-
dicting software development effort. IEEE Transactions on Software Engineering
(TSE), 31(7):615 – 624, 2005. One citation in section 2.2.4.

[150] S. Poulding and J. A. Clark. Efficient software verification: Statistical testing using
automated search. IEEE Transactions on Software Engineering (TSE), 36(6):763–
777, 2010. One citation in section B.3.

[151] J. Ross Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann Pub-
lishers Inc., San Francisco, CA, USA, 1993. One citation in section A.5.

[152] Prasad Reddy and CH. Hari. Software effort estimation using particle swarm
optimization with inertia weight. International Journal of Software Engineering,
2(4):87–96, 2011. One citation in section 2.3.

[153] R. P. Ribeiro. Utility-based Regression. PhD thesis, Department of Computer
Science, Faculty of Science, University of Porto, 2011. PhD thesis. One citation in
section 2.1.3.

197

http://www.itl.nist.gov/div898/handbook/

[154] Raul Rojas. Neural Networks - A Systematic Introduction. Springer-Verlag, Berlin,
New-York, 1996. One citation in section A.6.

[155] Lior Rokach and Oded Maimon. Clustering Methods, pages 321–352. Springer US,
Boston, MA, 2005. One citation in section 5.6.1.

[156] R. Rosenthal. The Handbook of Research Synthesis. Russell Sage Foundation, Sage,
New York, 1994. One citation in section B.

[157] Peter J. Rousseeuw. Silhouettes: A graphical aid to the interpretation and validation
of cluster analysis. Journal of Computational and Applied Mathematics, 20:53 – 65,
1987. One citation in section 5.6.1.

[158] Rohit Kumar Sachan, Ayush Nigam, Avinash Singh, Sharad Singh, Manjeet Choud-
hary, Avinash Tiwari, and Dharmender Singh Kushwaha. Optimizing basic CO-
COMO model using simplified genetic algorithm. Procedia Computer Science,
89:492 – 498, 2016. One citation in section 2.3.

[159] Federica Sarro, Alessio Petrozziello, and Mark Harman. Multi-objective software
effort estimation. In International Conference on Software Engineering (ICSE),
pages 619–630, 2016. One citation in section 2.2.5.

[160] Shashank Mouli Satapathy and Santanu Kumar Rath. Use case point approach
based software effort estimation using various support vector regression kernel meth-
ods. CoRR, abs/1401.3069, 2014. 4 citations in sections 3.3.3, 3.4.1, 5.3.3, and A.3.

[161] P. Sentas, L. Angelis, and I. Stamelos. Multinomial logistic regression applied on
software productivity prediction. In Panhellenic Conference in Information, 2003.
One citation in section 2.2.3.

[162] P. Sentas, L. Angelis, I. Stamelos, and G. Bleris. Software productivity and effort
prediction with ordinal regression. Information and Software Technology (IST),
47(1):17–29, 2005. 4 citations in sections 1, 2.2.3, 2.4.1, and 1.

[163] Yeong-Seok Seo, Kyung-A Yoon, and Doo-Hwan Bae. An empirical analysis of
software effort estimation with outlier elimination. In International Conference on
Predictive Models in Software Engineering (PROMISE), pages 25–32, 2008. One
citation in section 5.6.1.

198

[164] M. Shepperd and S. McDonell. Evaluating prediction systems in software project
estimation. Information and Software Technology (IST), 54:820–827, 2012. 11 cita-
tions in sections 2.4.2, 2.4.2, 2.4.2, 3.3.2, 4.3.2, 6.1, 6.2.4, 7.1.3, B, B.3, and B.3.

[165] M. Shepperd and C. Schofield. Estimating software project effort using analogies.
IEEE Transactions on Software Engineering (TSE), 23(12):736–743, 1997. 7 cita-
tions in sections 1.1.4, 2.4.2, 2.4.2, 3.3.3, 4.3.3, 5.3.3, and A.4.

[166] Alaa F. Sheta. Estimation of the COCOMO model parameters using genetic al-
gorithms for NASA software projects. Journal of Computer Science, 2(2):118–123,
2006. One citation in section 2.3.

[167] Alex J. Smola and Bernhard Schölkopf. A tutorial on support vector regression.
Statistics and Computing, 14(3):199–222, 2004. One citation in section A.3.

[168] Patricia Snyder and Stephen Lawson. Evaluating results using corrected and uncor-
rected effect size estimates. The Journal of Experimental Education, 61(4):334–349,
1993. 2 citations in sections B.3 and B.3.

[169] L. Song, L. Minku, and X. Yao. The impact of parameter tuning on software
effort estimation using learning machines. In International Conference on Predictor
Models in Software Engineering (PROMISE), pages 9:1–9:10, Baltimore, USA, 2013.
8 citations in sections 1.1.1, 2.3, 3.3.2, 3.3.3, 3.4.1, 4.3.3, 5.3.3, and 0.

[170] L. Song, L. Minku, and X. Yao. The potential benefit of relevance vector machine
to software effort estimation. In International Conference on Predictor Models in
Software Engineering (PROMISE), pages 52–61, Turin, Italy, 2014. 8 citations in
sections 3.3.2, 3.3.3, 3.4.2, 0, 5.3.4, 5.4.2, 6.1, and 6.2.1.

[171] L. Song, L. Minku, and X. Yao. A novel automated approach for software effort
estimation based on data augmentation. In ACM Symposium on the Foundations
of Software Engineering (FSE), Lake Buena Vista, Florida, USA, 2018. 3 citations
in sections 0, 6.1, and 6.2.1.

[172] L. Song, L. Minku, and X. Yao. Software effort interval prediction via Bayesian
inference and synthetic Bootstrap resampling. Submitted to ACM Transactions on
Software Engineering and Methodology (TOSEM’18), 2018. One citation in section
0.

199

[173] Qinbao Song, Zihan Jia, Martin Shepperd, Shi Ying, and Jin Liu. A general software
defect-proneness prediction framework. IEEE Transaction on Software Engineering
(TSE), 37(3):356–370, 2011. One citation in section 3.3.1.

[174] I. Stamelos and L. Angelis. Managing uncertainty in project portfolio cost estima-
tion. Information and Software Technology, 43:759–768, 2001. 2 citations in sections
1.1.2 and 4.1.

[175] I. Stamelos, L. Angelis, P. Dimou, and E. Sakellaris. On the use of Bayesian belief
network for prediction of software productivity. Information and Software Technol-
ogy (IST), 45(1):51–60, 2003. One citation in section 2.2.4.

[176] Chakkrit Tantithamthavorn, Shane McIntosh, Ahmed E. Hassan, and Kenichi Mat-
sumoto. Automated parameter optimization of classification techniques for defect
prediction models. In International Conference on Software Engineering (ICSE),
pages 321–332, May 2016. One citation in section 2.3.

[177] M. Tipping. Sparse Bayesian learning and the relevance vector machine. Journal of
Machine Learning, 1:211–244, 2001. 6 citations in sections 3.3.3, 5.2.1, 5.6.3, A.2,
A.2, and A.2.

[178] Luis Torgo, Paula Branco, Rita P. Ribeiro, and Bernhard Pfahringer. Resampling
strategies for regression. Expert Systems, 32(3):465–476, 2015. One citation in
section 2.1.3.

[179] Luis Torgo, Rita P. Ribeiro, Bernhard Pfahringer, and Paula Branco. SMOTE for
regression. In Progress in Artificial Intelligence, pages 378–389, Berlin, Heidelberg,
2013. Springer Berlin Heidelberg. One citation in section 2.1.3.

[180] V. Vapnik. Estimation of Dependences Based on Empirical Data: Springer Series in
Statistics (Springer Series in Statistics). Springer-Verlag New York, Inc., Secaucus,
NJ, USA, 1982. One citation in section A.2.

[181] V. Vapnik. The Nature of Statistical Learning Theory. Springer-Verlag New York,
Inc., New York, NY, USA, 1995. 2 citations in sections A.2 and A.3.

[182] V. Vapnik. Statistical Learning Theory. Wiley, 1998. 2 citations in sections 1.1.1
and A.2.

200

[183] Andras Vargha and Harold D. Delaney. A critique and improvement of the CL
common language effect size statistics of McGraw and Wong. Journal of Educational
and Behavioral Statistics, 25(2):101–132, 6 2000. 6 citations in sections 3.4.1, 5.4.1,
6.2.4, B.3, B.3, and B.3.

[184] George Wadsworth and Joseph Bryan. Introduction to Probability and Random
Variables. A Wiley publication in mathematical statistics. McGraw-Hill, 1960. One
citation in section 3.2.1.

[185] Shuo Wang and Xin Yao. Using class imbalance learning for software defect predic-
tion. IEEE Transactions on Reliability, 62:434–443, 2013. One citation in section
2.1.2.

[186] Gary M. Weiss. Mining with rarity: A unifying framework. SIGKDD Explor. Newsl.,
6(1):7–19, 2004. 2 citations in sections 2.1.1 and 2.1.2.

[187] Jianfeng Wen, Shixian Li, Zhiyong Lin, Yong Hu, and Changqin Huang. Systematic
literature review of machine learning based software development effort estimation
models. Information and Software Technology (IST), 54(1):41–59, 2012. 10 citations
in sections 1, 1.1.2, 1.1.4, 2, 3.3.3, 4.1, 5.3.3, 6.1, 6.2.1, and A.5.

[188] Peter A. Whigham, Caitlin A. Owen, and Stephen G. Macdonell. A baseline model
for software effort estimation. ACM Transactions on Software Engineering and
Methodology (TOSEM), 24(3):20:1–20:11, 2015. 6 citations in sections 3.3.3, 5.3.3,
5.3.4, 5.4.1, A.1, and A.1.2.

[189] Frank Wilcoxon. Individual comparisons by ranking methods. Biometrics Bulletin,
1(6):80–83, 1945. 2 citations in sections 3.4.1 and 5.5.3.

[190] Gerhard Wittig and Gavin Finnie. Estimating software development effort with
connectionist models. Information and Software Technology (IST), 39:469 – 476,
1997. One citation in section A.6.

[191] B. Wlodzimierz. The Normal Distribution: Characterizations with Applications.
Springer-Verlag, 1995. 3 citations in sections 4.2, 5.2.2, and 5.2.2.

201

[192] H. Zhao and Sudha Ram. Constrained cascade generalization of decision trees.
IEEE Transactions on Knowledge and Data Engineering, 16(6):727–739, 2004. One
citation in section A.7.

[193] Zhi-Hua Zhou. Ensemble Methods: Foundations and Algorithms. Chapman & Hal-
l/CRC, 1st edition, 2012. 3 citations in sections 5.1, 5.2, and A.7.

202

	1 Introduction
	1.1 Research Questions
	1.1.1 Synthetic Data Generation
	1.1.2 A Bayesian Approach for Uncertain Effort Estimation
	1.1.3 Synthetic Bootstrap Ensemble for Uncertain Estimation
	1.1.4 Sensitivity to Parameter Setting of SEE Methods

	1.2 Formulation of the Problem
	1.2.1 SEE: A Regression Problem
	1.2.2 Uncertain Effort Estimation
	1.2.3 Data Augmentation in SEE

	1.3 Thesis Contributions and Organisation

	2 Background and Literature Review
	2.1 Data Augmentation for Small Data Problem
	2.1.1 Data Augmentation in ML Classification
	2.1.2 Data Augmentation in Software Defect Prediction
	2.1.3 Data Augmentation in ML Regression
	2.1.4 Data Augmentation in SEE

	2.2 Uncertain Effort Estimation Methods
	2.2.1 Bootstrap Wrapping
	2.2.2 Empirical Error Probability Consistency Assumption
	2.2.3 Categorical Conversion
	2.2.4 Uncertain Prediction from Bayesian Inference
	2.2.5 Other Methods Optimizing Uncertainty

	2.3 Parameter Settings for SEE Methods
	2.4 Performance Evaluation of SEE Methods
	2.4.1 SEE Data Sets
	2.4.2 Metrics for Point Prediction
	2.4.3 Metrics for Prediction Interval

	2.5 Summary and Discussion

	3 A Synthetic Project Generation Approach for SEE
	3.1 Introduction
	3.2 Our Synthetic Data Generator
	3.2.1 Synthetic Feature Generation
	3.2.2 Synthetic Effort Generation
	3.2.3 Further Discussion on Our Data Generator

	3.3 Experimental Design
	3.3.1 Data Sets
	3.3.2 Performance Evaluation
	3.3.3 Baseline SEE Methods
	3.3.4 Parameter Settings

	3.4 Experimental Result and Discussion
	3.4.1 Effect of Synthetic Data on Prediction Performance
	3.4.2 Reasons for Effectiveness of Our Synthetic Projects
	3.4.3 Comparison of Synthetic Project Generators

	3.5 Summary and Discussion

	4 RVM: A Promising Uncertain Effort Estimator
	4.1 Introduction
	4.2 RVM for Uncertain Effort Estimation
	4.3 Experimental Design
	4.3.1 Data Sets
	4.3.2 Performance Evaluation
	4.3.3 Benchmark SEE Methods
	4.3.4 Parameter Settings

	4.4 Experimental Result and Discussion
	4.4.1 Evaluation of Point Estimation of RVM
	4.4.2 Evaluation of Uncertain Estimation of RVM

	4.5 Summary and Discussion

	5 SynB-RVM: Synthetic Bootstrap Ensemble of RVMs
	5.1 Introduction
	5.2 SynB-RVM: The Proposed Uncertain Estimator
	5.2.1 Training Phase of SynB-RVM
	5.2.2 Prediction Phase of SynB-RVM

	5.3 Experimental Design
	5.3.1 Data Sets
	5.3.2 Performance Evaluation
	5.3.3 Point Estimation Benchmark Methods
	5.3.4 Prediction Interval Benchmark Methods
	5.3.5 Parameter Settings

	5.4 Evaluation of the Proposed SynB-RVM
	5.4.1 Evaluation of Point Estimation
	5.4.2 Evaluation of Uncertain Estimation
	5.4.3 Brief Summary

	5.5 Investigation into SynB-RVM Components
	5.5.1 Three Methods that Derive Final Uncertain Prediction
	5.5.2 Synthetic Displacement and Bootstrap Pruning
	5.5.3 More Comparisons with Bagging for Point Prediction
	5.5.4 Correlation Between Point Performance and Relative Width
	5.5.5 Brief Summary

	5.6 Implications to Practice
	5.6.1 Prediction Performance and Data Set Characteristics
	5.6.2 Understandability vs. Better Performance
	5.6.3 Time Complexity of Uncertain Methods

	5.7 Summary and Discussion
	5.7.1 Summary
	5.7.2 Discussion

	6 Sensitivity to Parameter Settings for SEE Methods in Online Scenario
	6.1 Introduction
	6.2 Analysis Methodology and Experimental Design
	6.2.1 Online Scenario
	6.2.2 Data Sets with Chronological Information
	6.2.3 Benchmark SEE Methods
	6.2.4 Evaluation of Sensitivity to Parameter Settings

	6.3 Experimental Result and Analyses
	6.3.1 Sensitivity of Average Performance Across Time Steps
	6.3.2 Step-Wise Performance of Best Parameter Settings
	6.3.3 How Could Ensemble Help?

	6.4 Summary and Discussion

	7 Conclusions and Future Work
	7.1 Conclusions
	7.1.1 Synthetic Data Generation for Small Data Problem
	7.1.2 Uncertain Effort Estimation for Noisy Data Problem
	7.1.3 Statistical Analysis for Model Sensitivity Problem

	7.2 Future Work
	7.2.1 Data Generator with Guided Choice of Training Examples
	7.2.2 Synthetic Ordinal/Categorical Feature Modelling
	7.2.3 Synthetic Effort Modelling
	7.2.4 Effort Noise Modelling and Non-Symmetric PIs
	7.2.5 SynB-RVM Variants
	7.2.6 Adapting Our Proposed Methods to Online Scenario
	7.2.7 Model Sensitivity of Our Methods in Online Scenario

	A Point Effort Estimation Methods
	A.1 Linear Regression
	A.1.1 Multivariate Linear Regression (MLR)
	A.1.2 Automatically Transformed Linear Model (ATLM)
	A.1.3 Potential Issue of the Linear Models

	A.2 Relevance Vector Machine (RVM)
	A.3 Support Vector Regression (SVR)
	A.4 Analogy-Based Estimation (ABE)
	A.5 Regression Tree (RT)
	A.6 Artificial Neural Network (ANN)
	A.7 Ensembles of Learning Methods

	B Statistical Tests for SEE Methods
	B.1 Wilcoxon Signed-rank Test
	B.2 Friedman Test
	B.3 Effect Size

	C Effect of Synthetic Data on Prediction Performance in Original Scale of Effort Values
	D Supplementary Experiments with Separate Test Set
	D.1 Point Estimate With Spare Test Set
	D.2 Uncertain Estimate With Spare Test Set
	D.2.1 Evaluation on Hit Rate
	D.2.2 Evaluation on Relative Width

	List of References

