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Abstract. Real-world image classification usually suffers from the multi-
class imbalance issue, probably causing unsatisfactory performance, es-
pecially on minority classes. A typical way to address such problem is to
adjust the loss function of deep networks by making use of class imbal-
ance ratios. However, such static between-class imbalance ratios cannot
monitor the changing latent feature distributions that are continuously
learned by the deep network throughout training epochs, potentially fail-
ing in helping the loss function adapt to the latest class imbalance sta-
tus of the current training epoch. To address this issue, we propose an
adaptive loss to monitor the evolving learning of latent feature distri-
butions. Specifically, the class-wise feature distribution is derived based
on the region loss with the objective of accommodating feature points of
this class. The multi-class imbalance issue can then be addressed based
on the derived class regions from two perspectives: first, an adaptive
distribution loss is proposed to optimize class-wise latent feature distri-
butions where different classes would converge within the regions of a
similar size, directly tackling the multi-class imbalance problem; second,
an adaptive margin is proposed to incorporate with the cross-entropy
loss to enlarge the between-class discrimination, further alleviating the
class imbalance issue. An adaptive region-based convolutional learning
method is ultimately produced based on the adaptive distribution loss
and the adaptive margin cross-entropy loss. Experimental results based
on public image sets demonstrate the effectiveness and robustness of our
approach in dealing with varying levels of multi-class imbalance issues.

Keywords: Multi-class imbalance classification · Deep learning · Adap-
tive loss · Feature engineering · Margin.

1 Introduction

In real-world applications of image classification such as human behavior recog-
nition [24], video classification [27], and medical decision making [19], image
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classes usually exhibit the multi-class imbalance issue, for which some classes
are under-represented as minorities while others are over-represented as majori-
ties. Catering for this multi-class imbalance issue is important to retain good
predictive performance, especially for those minority classes. Taking image clas-
sifications in the medical domain as an example, the number of images related
to rare diseases is usually much less than those related to common diseases and
healthy cases. Neglecting this issue would probably result in poor predictive
performance on minority classes, which poses severe threats to patients afflicted
with rare diseases and even undermines the public health service system [19].

Existing approaches for multi-class imbalance learning can be grouped into
three categories [13,36,15,41] that are data-level [25,37], model-level [42,38], and
cost-sensitive approaches [20,6,23]. Cost-sensitive approach is the most popular
and efficient approach in mitigating the image multi-class imbalance issue, which
designates different weights to training samples of different classes to adjust the
loss function [41]. The weighting is typically designed based on class imbalance
ratios [20,6,3,23]. However, imbalance ratios remain static and cannot monitor
the changing latent feature distributions that are continuously learned by the
deep network throughout training epochs, potentially failing in helping the loss
functions to adapt to the latest class imbalance status. Latent feature distribu-
tions have shown to be beneficial to the multi-class imbalance learning [11,21],
and thus is especially taken into account in this paper.

To the best of our knowledge, there have been only a few studies employing
derived latent feature distributions to facilitate multi-class imbalance learning
[11,21]. However, they all rely on strict assumptions of the latent feature dis-
tribution such as the Gaussian distribution, and cannot adaptively learn the
latent feature distribution of entire training samples [11,21]. Our approach en-
ables practical learning of the latent feature space by defining a class-wise region,
within which most feature points of the same class can be enclosed. Concretely,
each region in the latent feature space corresponds to a single class, which is
outlined by a class center depicting the geometric location of the feature points
of that class and a radius depicting the spread of the feature points around
the class center. In this way, we do not need to rely on any strict assumption
on the latent feature distribution, which will be adaptively learned throughout
training epochs. Our region learning module utilizes the region loss to derive the
class-wise region over time during the training process of the deep network.

The class imbalance problem can then be addressed based on the derived
class regions in the latent feature space from two perspectives. First, we propose
an adaptive distribution loss to guide the learning process of the class-wise latent
feature distribution, so that all class regions can be gradually enclosed within
a benchmark radius. As a result, the decision boundary constructed based on
class regions in the latent feature space would be unbiased towards any class,
dealing with class imbalance directly. Second, we propose an adaptive margin
as a mediator to upgrade the original cross-entropy so that between-class dis-
crimination can be enlarged to eliminate possible overlaps of feature points of
different classes, further alleviating the class imbalance issue. Ultimately, we
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construct the convolutional networks by optimizing the adaptive distribution
loss and the adaptive margin cross-entropy loss simultaneously, producing our
Adaptive Region-Based Convolutional Learning (ARConvL). In summary, our
main contributions are:

– We propose a region learning module based on the region loss to derive class-
wise regions, each of which consists of a center and a radius, continuously
monitoring the class distribution without posing any strict assumption on
the latent feature space;

– Based on the derived class regions, we propose an adaptive distribution loss
to optimize the class-wise latent feature distribution, so that feature points
of different classes are optimized to be enclosed within a benchmark radius,
addressing the class imbalance problem directly;

– Based on the derived class regions, we propose an adaptive margin as a
mediator to upgrade the loss function, producing our adaptive margin cross-
entropy loss, so that the between-class discrimination can be improved, fur-
ther alleviating multi-class imbalance learning;

– We experimentally investigate the effectiveness and robustness of our pro-
posed ARConvL in dealing with different levels of class imbalance.

The remainder of this paper is organized as follows. Section 2 presents related
work. Section 3 proposes ARConvL. Experimental setup and results are discussed
in Section 4. The paper is concluded in Section 5.

2 Related Work

2.1 Multi-class Imbalance Learning

Existing approaches of multi-class imbalance learning can be generally grouped
into three categories: data-level approaches, model-level approaches, and cost-
sensitive approaches [13,36,15,41].

Data sampling is a representative of data-level approaches, which syntheti-
cally balance the training set by under-sampling the majorities or (and) over-
sampling the minorities in the image space [13]. Traditional sampling methods
such as RUS (Random Under-Sampling) [13], ROS (Random Over-Sampling)
[13], SMOTE (Synthetic Minority Over-sampling Technique) [4], and ADASYN
(Adaptive Synthetic Sampling Approach) [12] are typically used for class im-
balance learning with the numerical features. Several studies extend ROS and
RUS to the image data [18,2]. Due to the popularity of deep learning, generative
models are also widely used as over-sampling techniques to tackle the multi-class
imbalance problem for the image data [25,37].

Ensemble learning is a representative of model-level approaches that has been
popularly used for multi-class imbalance learning. Good examples are AdaBoost
[10], AdaBoost.NC [35,36], SMOTEBoost [5], and RUSBoost [29]. Methods of
this category need to train multiple classifiers, and when it comes to deep learn-
ing, the process would often be time-consuming [32,42,38].
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Cost-sensitive methods deal with the class imbalance issue by designating
different weights to training samples or (and) classes to distinguish the losses
posed to the majority vs the minority classes. [9,13,1]. The weights are usu-
ally incorporated with the loss function of the deep network to deal with the
multi-class imbalance problem for image data [20,6]. Such methods that make
alterations to the loss function are also known as the loss modification based
methods, for which we present into more details in the subsequent section.

2.2 Loss Modification Based Methods

Methods of this type deal with multi-class imbalance problem via the modifica-
tion of the loss function in the deep networks. Re-weighting and logit adjustment
are two common approaches for loss modification [41].

For re-weighting approaches, the sample (class) weights are usually encoded
into the cross-entropy loss or softmax, rephrasing the loss functions [41]. The
main challenge of the re-weighting approaches is how to set proper weights.
Lin et al. design sample weights based on their classification difficulties and
class imbalance ratios, which are then incorporated into the cross-entropy loss,
contributing to the focal loss [20]. Cui et al. design class weights based on a
novel effective number, contributing to the class-balanced loss [6]. Besides en-
coding sample (class) weights into the loss, more related strategies include setting
weights directly on the softmax function [28,33].

Logit adjustment approaches tune the logit value of the softmax function to
tackle the multi-class imbalance problem [41]. Margins between classes can be
produced based on class imbalance ratios to adjust the logit [3]. In 2020, Liu et al.
encode the information of feature distribution based on the Gaussian distribution
assumption into the logit, enlarging the margin between the minority classes and
the majority classes [21]. More recently, Menon et al. adjust the logit based on
label frequency to distinguish margins of different classes, contributing to the
logit adjustment loss [23].

This paper aims for proposing an adaptive region-based learning method to
derive feature distributions adaptively across training epochs without posing any
strict assumption to the distribution. With this in mind, we can upgrade the loss
function, dealing with the class imbalance issue.

2.3 Convolutional Prototype Learning

Compared to the traditional CNN, Convolutional Prototype Learning (CPL) uti-
lizes L2-norm, rather than the cosine similarity, to compute the distance (similar-
ity) between the feature point and its connection weight vector [40]. Thus, feature
distributions learned with L2-norm can present hyper-sphere distributions in the
latent feature space. The connection weights between the feature layer and the
distance output layer can be used as centers of classes. In 2018, Yang et al. point
out that this framework would learn more robust features especially after adding
an extra regularization term [40]. Later in 2019, Hayat et al. further propose the
affinity loss based on L2-norm, where a hyper-parameter needs to be predefined
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Fig. 1. Overview learning process of our proposed ARConvL on each training batch.
Fig.1(b) further illustrates the benchmark radius, upper-bound radius, and correspond-
ing margin σ2 that measures the potential overlap between class regions.

and encoded to the loss to manipulate the margin manually [11]. By considering
the distribution of class centers, Hayat et al. also propose a loss to force class
centers evenly distributed, so that the discrimination between classes would be
similar, alleviating the class imbalance problem [11].

CPL has the advantage of describing geometric characteristics of decision
boundaries in a straightforward way such as hyper-sphere. Thus, we opt for
CPL as our base framework to learn feature distributions of image data.

3 ARConvL

This section proposes Adaptive Region-Based Convolutional Learning (AR-
ConvL) for multi-class imbalance learning. Section 3.1 outlines the learning
framework, followed by Section 3.2 presenting the way to adaptively learn class-
wise regions across the training process. Sections 3.3 and 3.4 adaptively optimize
the class-wise latent feature distribution and adaptively produce the between-
class margin cross-entropy loss, respectively, for multi-class imbalance learning.

3.1 Overview of ARConvL

Figure 1 shows the learning process of ARConvL on each training batch {xi, i =
1, · · · , n}, based on which feature points {f(xi)} in the latent feature space are
trained via convolutional layers. Such latent features are then connected with
the region learning module to derive class regions, each of which consists of a
class center C and a class radius R learned from the region loss LR. Based on
the class regions, two loss functions are proposed from two perspectives to cater
for class imbalance learning: the first perspective aims to optimize the class-
wise latent feature distribution to be enclosed within a region with a benchmark
radius based on the distribution loss LD; the second perspective aims to enlarge
the distance between class regions via the proposed margin as a mediator to
produce the margin loss LM . In formulation, the loss of ARConvL is

L = LR + LD + LM , (1)
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where LR, LD, and LM are the region, distribution, and margin cross-entropy
loss functions, respectively. We will present the design of the three loss functions
in detail in the subsequent sections.

As explained in Section 2.3, we adopt CPL as the base framework to boost
geometric characteristics of the latent feature space [40] and thus L2-norm rather
than the cosine similarity is adopted as the distance metric in this paper. Ac-
cordingly, the distance of a sample from a region is d(f(xi), Cj) = ∥f(xi)−Cj∥2
and the distance between two regions is d(Cj , Cj′) = ∥Cj − Cj′∥2, where j, j′ ∈
{1, · · · , k}, i ∈ {1, · · · , n}, k is class number, and n is training batch size.

3.2 Region Learning Module

The region learning module aims to compute class-wise regions based on feature
points adaptively across training epochs. In particular, class centers {Cj} are
obtained as the network weights connecting the learned latent features. We then
propose the region loss LR to learn the radius Rj for each class j as

LR =
1

n

k∑
j=1

αj [

n∑
i=1,
xi∈j

(max{0, d∗(f(xi), Cj)−Rj}2 + γ ·R2
j )], (2)

where n is the training batch size, αj = maxj′(Nj′)/Nj quantifies the emphasis
to be placed on class j versus other classes, and Nj denotes the total number
of training samples of class j. We are employing γ · R2

j as the regularization
term for γ ∈ [0, 1]. We set γ = 0.05 in this paper based on our preliminary
experiments. Figure 2 illustrates the mechanism of the region loss: if a feature
point falls within its corresponding class region, it causes zero penalty to LR;
otherwise, this feature point contributes the penalty of [d(xi, Cyi

)−Ryi
]2 to LR.

We presume that class radii {Rj} are learnable variables, and other variables
such as variables in d(f(xi), Cj) are frozen as non-learnable5. We attach the
superscript “*” to variables to indicate that they are non-learnable variables. For
example, the non-learnable distance between feature point and class center is
denoted as d∗(f(x), C) in Fig. 1.

Figure 3 illustrates class regions learned by the region learning module of
ARConvL. We deliberately set the two-dimensional latent feature space to facil-
itate visualization. In our experimental studies, the latent feature dimension is
set to 64 to attain good performance. We can see that the majority classes often
learn regions of larger radii compared to those of minorities.

3.3 Optimizing Class-Wise Latent Feature Distribution

Based on the derived class regions, this section aims to optimize the latent
feature distribution of each class to be enclosed within a region surrounding
the class center with a benchmark radius that is universal to all classes and
5 In Tensorflow, we can annotate and freeze non-learnable variables using the com-

mand get_static_value().



ARConvL for Multi-class Imbalance Classification 7

Fig. 2. Illustration of the region loss LR

in Eq. (2). Given a class region with cen-
ter C and radius R, f(x1) locates in the
region and thus contributes null penalty
to LR; whereas, f(x2) contributes the
penalty of [d(f(x2), C)−R]2 to LR.

Fig. 3. Illustration of the class regions in
the latent feature space that are learned
by the region learning module of AR-
ConvL in MNIST.

can accommodate most feature points of this class. In this way, the decision
boundary constructed based on class regions in the latent feature space would
be unbiased towards any class, dealing with the class imbalance issue directly.
Thereby, one can rely on the class region to optimize the class-wise latent feature
distribution which does not need to pose any assumption (e.g., Gaussian) on it.

The benchmark radius is defined for all classes based on the derived class
regions as

Rben = min
j∈{1,···k}

dmin(Cj)/2, (3)

where dmin(Cj) = minj′ ̸=j d
∗(Cj , Cj′) is the minimum distance of two different

class centers and d∗(Cj , Cj′) is a non-learnable variable as explained in Sec. 3.1.
The upper-bound radius of all classes is formulated as

Rupp = max
j=1,··· ,k

(R∗
j , dmin(Cj)/2 ). (4)

where R∗
j is the radius of class j and is non-learnable in the learning process

of distribution loss. The upper-bound radius indicates the possible largest value
that feature points of each class would spread surrounding the class center. We
have Rben ≤ Rupp.

The idea is to move from the upper-bound radius towards the benchmark
radius downside, as shown in Fig.1(b), enforcing the class-wise latent feature
distribution to be enclosed within similar-sized regions. Thereby, the decision
boundary would be unbiased towards/against any class. We formulate the ideal
scenario of the class regions as Rben = Rupp. However, in the practical learning
process of latent feature distribution, Rupp > Rben frequently happens, so that
the classes having larger radii than the benchmark value should be penalized.
The idea is formulated as

β = min(1, (Rupp/Rben)
2 − 1), (5)

quantifying the emphasis on LD versus other loss functions of L in Eq. (1)
Overall, we integrate the adaptive distribution loss LD to optimize the latent

feature distribution of each class as

LD =
β

n

k∑
j=1

αj

n∑
i=1,
xi∈j

d2(f(xi), Cj), (6)
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where
∑

xi∈j d(f(xi), Cj)
2 accumulates the distance of feature points of class j

from their class center Cj and αj and β are with the same meaning as in Eqs. (2)
and (5), respectively. In particular, when the upper-bound Rupp approaches the
benchmark Rben downside, β → 0, leading to zero penalty to LD.

By introducing an adaptive penalization β, LD can also be viewed as a reg-
ularization term of the overall loss L in Eq. (1). Our experiments show that LD

has significant benefit to the prediction performance, being consistent with the
study of Yang et al. [40].

3.4 Enlarging Margin Between Classes

We define the adaptive margin as

σ2 = min(R2
ben, R2

upp −R2
ben), (7)

where Rben and Rupp are the benchmark and upper-bound radii in Eqs. (3)
and (4), respectively. As shown in Fig.1(b), margin σ2 measures the overlap be-
tween the derived class regions in the latent feature space, for which the learning
algorithm should have pushed the class regions away from each other to improve
their discrimination.

To incorporate the margin into the cross-entropy loss, we rephrase the soft-
max function for a given feature point xi as

p(xi ∈ j) =
ηj · e−d2(f(xi),Cj)

ηj · e−d2(f(xi),Cj) +
∑

j′ ̸=j ηj′ · e
−d2(f(xi),Cj′ )+σ2 ,

where ηj = Nj/(
∑k

j′=1 Nj′) is the imbalance ratio that was shown to be benefi-
cial for class imbalance learning when embedded into the softmax function [23]
and Nj denotes the total number of samples of class j. To push the class centers
being evenly distributed in the latent feature space, we formulate the softmax
function of class center Cj based on the margin σ2 as

p(Cj) =
e−d2(Cj ,Cj)

e−d2(Cj ,Cj) +
∑

j′ ̸=j e
−d2(Cj ,Cj′ )+σ2 =

1

1 +
∑

j′ ̸=j e
−d2(Cj ,Cj′ )+σ2 .

Overall, we integrate the adaptive margin cross-entropy loss LM for this
training batch across all classes as

LM =
1

n

k∑
j=1

n∑
i=1

− log(p(xi ∈ j)) +
1

k

k∑
j=1

− log(p(Cj)). (8)

Optimizing LM can simultaneously enlarge margins between classes at both the
feature point level and the class center level, alleviating the class imbalance issue.

4 Experimental Studies

This section aims to investigate the effectiveness of the proposed ARConvL
through a series of experiments. The code is available online 6.
6 Code and supplementary material: https://github.com/shuxian-li/ARConvL
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4.1 Experimental Setup

Following previous studies [11,25,37], our experiments are conducted based on
4 public image repositories: MNIST [8], Fashion MNIST [39], SVHN [26], and
Cifar10 [17], each of which contains 10 classes labeled from class 0 to 9. To
emulate varying class imbalance levels, we randomly sample 1/q of the training
data from even classes (i.e., 0, 2, 4, 6, and 8) as the minority classes for which
1/q ∈ {1, 1/10, 1/20, 1/50, 1/100}, following previous studies [16,11]. All train-
ing samples of odd classes are retained as the majority classes. For instance,
5 MNIST-related datasets are produced as MNIST-1, MNIST-10, MNIST-20,
MNIST-50, and MNIST-100. Table 1 of the supplementary material provides
description of the datasets used in the study.

For image sets produced from MNIST and Fashion MNIST, the input size
is (28, 28, 1) and we employ a simple backbone consisting of two sets of double
convolutional layers connected with one max-pooling layer, one flatten layer, one
dense layer, and a batch normalization layer in sequence. For image sets produced
based on SVHN and Cifar10, the input size is (32, 32, 3) and we employ ResNet
[30] with depth 44 as the backbone. All methods are set under the same CPL
framework. The latent space dimension is 64 and the training batch size is 128
in our experiments. Stochastic Gradient Descent (SGD) is used as the optimizer
with the momentum 0.9, and the initial learning rate is set to 0.1 for all datasets.
For MNIST, Fashion MNIST, and SVHN, the total number of training epochs is
set to 50, and we decay the learning rate by 0.1 at the 26-th and 41-th epochs.
For Cifar10, the total number of training epochs is set to 100, and we decay the
learning rate by 0.1 at the 51-th and 81-th epochs. For the proposed ARConvL,
the learning rate for the radius variables is set to 0.001 at the first three epochs
and 0.01 at the remaining training epochs.

We randomly select 90% of the training samples for model training and the
remaining 10% are reserved for validation, so that we can decide the best model
in terms of G-mean [31] out of the models created across training epochs as our
learned deep model. This is to alleviate the over-fitting issue which may partic-
ularly impact the deep learning process. We evaluate predictive performance of
deep models on spare test sets.

ARConvL are compared against 2 baseline methods, namely CPL [40] and
GCPL [40], and 5 state-of-the-art methods, namely Focal Loss (“Focal”) [20],
Class Balanced Loss (“CB”) [6], Class Balanced Focal Loss (“CB Focal”) [6],
Affinity Loss (“Affinity”) [11], and Logit Adjustment Loss (“LA”) [23]. Table 2 of
the supplementary material reports the parameter settings for those methods.

G-mean [31] and class-wise accuracy are used to evaluate performance for
being popularly used and shown to be robust in class imbalance learning [16,11].
Experiments are repeated 10 times, and the average performance (mean) ±
standard deviation (std) are reported. Friedman tests or Wilcoxon-signed rank
tests are used to detect statistically significant difference between more than
two or two methods across datasets [7]. Given rejection of H0, Holm-Bonferroni
correction [14] is conduced as the post-hoc test.



10 Shuxian Li et al.

Table 1. G-means (%) of the investigated methods. Each entry is the mean±std of 10
times. The last column corresponds to our ARConvL. The best model on each dataset
is highlighted in bold. The last row lists the average ranks (avgRank) of each model
across datasets. Significant difference against ARConvL is highlighted in yellow.

Data CPL GCPL Focal CB CB Focal Affinity LA ARConvL

Mnist-1 99.2±0.1 99.4±0.0 99.4±0.1 99.2±0.1 99.4±0.1 99.5±0.1 99.2±0.1 99.4±0.1
Mnist-10 98.2±0.2 98.5±0.1 98.8±0.2 98.3±0.1 98.6±0.3 98.7±0.2 98.5±0.1 99.1±0.0
Mnist-20 97.3±0.2 97.4±0.3 98.3±0.3 97.5±0.3 98.1±0.3 97.5±0.4 98.1±0.3 98.8±0.2
Mnist-50 95.1±0.3 94.4±0.4 96.8±0.5 95.9±0.3 97.0±0.5 94.7±1.4 97.1±0.4 98.4±0.3
Mnist-100 92.3±0.8 89.0±1.3 94.8±0.9 93.5±0.9 94.6±0.8 90.6±1.5 96.0±0.5 97.3±0.6
Fashion-1 91.0±0.2 92.0±0.2 91.4±0.4 91.1±0.2 91.4±0.4 92.4±0.2 91.0±0.2 92.2±0.2
Fashion-10 86.6±0.6 87.1±0.4 86.8±0.5 86.9±0.5 86.9±0.4 86.2±0.3 87.6±0.3 88.5±0.5
Fashion-20 84.3±0.6 84.1±0.8 84.6±0.8 84.5±0.7 84.7±0.6 82.6±0.8 85.6±0.5 86.3±0.7
Fashion-50 80.0±1.0 77.9±1.4 81.2±1.0 81.2±1.1 81.6±1.2 76.3±1.8 82.2±1.9 84.0±1.0
Fashion-100 75.1±2.7 72.7±2.1 77.5±2.2 77.8±1.5 78.2±1.3 55.4±20.2 79.6±2.5 82.3±0.8

SVHN-1 95.4±0.1 95.3±0.2 96.0±0.2 95.4±0.1 96.1±0.1 95.8±0.1 95.4±0.1 95.9±0.2
SVHN-10 88.5±0.8 86.9±0.9 91.7±0.7 90.8±0.3 92.0±0.2 90.4±0.4 91.8±0.4 93.3±0.2
SVHN-20 83.5±1.5 77.8±2.8 88.8±0.6 87.9±0.4 89.2±0.7 84.7±0.9 90.6±0.4 91.9±0.5
SVHN-50 75.3±0.6 48.7±8.0 83.1±0.6 82.0±0.7 84.1±0.7 15.4±14.8 88.2±1.4 90.1±1.0
SVHN-100 61.6±2.5 0.0±0.0 72.9±2.6 70.9±2.3 75.6±1.7 0.0±0.0 86.1±0.9 87.2±1.1
Cifar10-1 89.7±0.2 89.6±0.2 91.1±0.2 89.8±0.3 91.1±0.2 89.9±0.3 89.6±0.3 90.3±0.4
Cifar10-10 77.3±0.6 73.4±1.5 78.6±0.8 77.3±0.9 79.1±0.4 74.1±1.1 81.9±0.4 82.3±0.6
Cifar10-20 69.5±1.1 61.6±1.5 69.9±1.2 69.3±1.8 71.0±1.0 54.9±3.9 79.0±0.6 79.6±0.6
Cifar10-50 54.9±3.0 39.9±4.1 57.5±2.6 55.0±3.3 57.2±3.2 0.0±0.0 73.3±1.6 75.6±0.6
Cifar10-100 43.9±1.2 5.0±7.8 46.2±2.2 46.0±2.5 45.8±3.4 0.0±0.0 69.3±2.3 71.3±1.2
avgRank 6.45 6.825 3.5 5.2 3.25 6.175 3.2 1.4

4.2 Performance Comparison

This section discusses performance comparisons between our ARConvL against
its competitors for multi-class imbalance learning. Comparisons in terms of G-
mean are reported in Table 1; comparisons in terms of class-wise accuracy present
the same conclusions and can be found in Section 3.1 of the supplementary
material for space reason. The last column corresponds to ARConvL

Table 1 shows that our ARConvL achieves the best G-means in 16 out of 20
datasets, showing the effectiveness of our approach in dealing with varying levels
of class imbalance. Friedman tests at the significance level 0.05 reject H0 with
the p-value 0, meaning that there is significant difference between methods. The
average rank (“avgRank”) at the last row provides a reasonable idea of how well
each method performs compared to others. The average rank of ARConvL is
1.4, being the best (lowest value) among all competing methods. This indicates
that our method generally performs the best across datasets with different levels
of class imbalance. ARConvL is then chosen as the control method to conduct
post-hoc tests for performing the best among all classifiers. Post-hoc tests show
that the proposed ARConvL significantly outperforms all competitors.

Note that GCPL obtains zero G-mean in SVHN-100; Affinity obtains zero
G-means individually in SVHN-100, Cifar10-50, and Cifar10-100. Further ex-
ploitation finds that the corresponding method got zero recalls in certain minor-
ity classes, thereby resulting in zero G-means. Such poor recalls usually occur in
severely imbalanced scenarios.
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Fig. 4. Performance deterioration in terms of G-mean (%) with the increase of class
imbalance levels. The x-axis represents different class imbalance levels, and the y-axis
represents G-means. We show G-mean between 50 and 100 to facilitate visualization.

4.3 Performance Deterioration with Increasing Imbalance Levels

This section investigates the relation between the class imbalance levels and
predictive performance of all investigated methods on each image repository.
Figure 4 shows experimental results in terms of G-means. We can see that all
methods achieve similar G-means in the original image repository for the case
q = 1. With the increase of class imbalance levels with larger q, performance of all
methods declines. The proposed ARConvL usually achieves better G-means than
its competitors when datasets become more imbalanced, demonstrating better
robustness of ARConvL against different levels of class imbalance. Experimental
results in terms of class-wise accuracy show the same pattern and are reported
in Figure 1 and Section 3.2 of the supplementary material.

4.4 Effect of Each Adaptive Component of ARConvL

This section investigates the effect of each adaptive component of the overall
loss in Eq. (1). Particularly, the region loss LR is indispensable to derive the
class-wise regions and thus should not be eliminated; the adaptive margin cross-
entropy loss LM contains two adaptive components, namely the adaptive margin
σ2 and the loss for class centers 1

k

∑k
j=1 − log(p(Cj)). Therefore, effects of the

adaptive distribution loss LD in Eq. (6), the adaptive margin σ2 (of LM in
Eq. (8)), and the penalty on class centers (of LM ) are investigated individually.

For the space reason, we only report experimental results in terms of G-means
in this section. Experimental results in terms of class-wise accuracy lead to the
same conclusions and are provided in Section 3.3 of the supplementary material.
Effect of Adaptive Distribution Loss To conduct this investigation, the
adaptive parameter β of ARConvL is fixed and chosen from {0, 0.5, 1}. In par-
ticular, ARConvL without the adaptive distribution loss is equivalent to the
case β = 0. Pair-wise comparisons in terms of G-means between ARConvL in
Table 1 and the degraded ARConvL with non-adaptive β in Table 2(a) show the
performance deterioration in most cases.

Given fixed β = 0 and β = 1, Wilcoxon signed rank tests reject H0 with
p-values 0.0017 and 0.04, respectively, showing significant difference in predic-
tive performance between ARConvL and the degraded versions. Average ranks
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Table 2. G-means (%) of the degraded ARConvL with non-adaptive β. Each entry
is the mean±std of 10 times. Better pair-wise performance compared to ARConvL in
Table 1 is highlighted in bold. The last row lists average ranks (avgRank) of ARConvL
vs the degraded version across datasets. Significant difference is highlighted in yellow.

(a) Non-adaptive β

Data β = 0 β = 0.5 β = 1

Mnist-1 99.3±0.0 99.3±0.1 99.3±0.1
Mnist-10 98.7±0.1 99.1±0.0 99.0±0.1
Mnist-20 98.1±0.3 98.9±0.1 98.9±0.1
Mnist-50 97.1±0.4 98.5±0.2 98.6±0.2
Mnist-100 95.6±0.6 97.6±0.3 97.8±0.3
Fashion-1 91.4±0.2 92.2±0.2 92.0±0.2
Fashion-10 87.4±0.2 88.7±0.3 88.3±0.5
Fashion-20 84.8±1.1 86.6±0.9 86.4±0.9
Fashion-50 81.7±1.4 82.8±2.8 84.3±0.8
Fashion-100 79.6±2.2 81.3±1.0 81.7±1.4

SVHN-1 96.3±0.1 95.7±0.3 94.9±0.7
SVHN-10 93.0±0.5 93.2±0.4 92.0±1.6
SVHN-20 91.3±0.5 92.1±0.4 91.8±0.7
SVHN-50 88.0±1.3 89.3±1.4 89.7±1.7
SVHN-100 83.0±3.5 86.7±0.8 85.2±5.7

Cifar10-1 92.0±0.2 90.2±0.5 89.6±0.5
Cifar10-10 82.5±0.6 82.9±0.6 81.8±1.0
Cifar10-20 78.2±0.7 80.0±0.7 79.4±1.1
Cifar10-50 70.9±1.9 75.3±0.9 75.6±0.8
Cifar10-100 62.7±2.8 68.2±3.5 71.6±0.7
avgRank 1.15/1.85 1.4/1.6 1.3/1.7

(b) Non-adaptive σ2

σ2 = 0 σ2 = 0.5 σ2 = 1

99.4±0.0 99.4±0.0 99.4±0.1
99.0±0.1 99.0±0.1 99.1±0.1
98.9±0.1 98.8±0.2 98.9±0.2
98.4±0.2 98.4±0.3 98.5±0.2
97.4±0.4 97.6±0.4 97.3±0.6

91.8±0.1 92.1±0.2 92.1±0.2
88.3±0.4 88.5±0.4 88.4±0.4
86.5±1.0 86.3±1.3 86.3±0.8
84.6±0.6 84.6±0.5 83.8±1.3
82.2±1.5 81.9±1.7 81.9±1.5

95.3±0.2 95.6±0.2 95.9±0.2
92.0±0.4 92.3±0.6 92.8±0.3
90.2±1.1 90.1±1.8 91.2±1.5
88.0±1.1 88.8±1.3 89.4±0.5
84.9±2.7 85.0±2.2 85.7±2.8

89.3±0.5 90.0±0.4 90.3±0.5
80.1±1.1 81.6±0.7 81.9±0.7
77.0±1.4 78.7±0.6 79.4±0.8
73.8±1.4 74.8±1.0 74.6±1.7
69.1±3.0 70.1±2.6 69.3±3.1

1.25/1.75 1.2/1.8 1.25/1.75

(c) ARC-C

ARC-C

99.3±0.0
99.1±0.1
98.9±0.1
98.4±0.2
97.4±0.5
91.7±0.2
85.2±1.2
83.4±1.8
81.8±1.4
80.7±1.7

12.1±1.5
54.1±34.8
75.3±21.4
79.6±2.1
76.9±4.6

68.2±8.5
64.1±1.4
62.5±1.6
61.4±1.6
59.6±3.5

1.1/1.9

are 1.15 and 1.3 for ARConvL vs 1.85 and 1.7 for the degraded versions, respec-
tively. This means that adaptively learning β throughout the training epochs
has significantly beneficial effect on predictive performance.

Given fixed β = 0.5, Wilcoxon signed rank test does not find significant
difference between ARConvL and the degraded version with p-value 0.39. Fur-
ther analyses found that on the datasets that the degraded version outperforms,
performance deterioration of ARConvL is at most 0.79% in Cifar10-10; whereas
on the datasets that ARConvL outperforms, performance superiority can be as
high as 4.59% in Cifar10-100, with the average improvement at 0.80%. This
indicates that the degraded ARConvL may cause relatively large performance
decline compared to the small performance improvement it may have.

Overall, the experimental investigation shows the effectiveness of the adaptive
distribution loss, in view of the adaptive β, on retaining good performance in
multi-class imbalance learning.
Effect of Adaptive Margin To conduct this investigation, the adaptive mar-
gin σ2 in LM of ARConvL is fixed and chosen from {0, 0.5, 1}. In particular,
ARConvL without the adaptive margin is equivalent to the case σ2 = 0. Pair-
wise comparisons in terms of G-means between ARConvL in Table 1 and the
degraded ARConvL with non-adaptive σ2 in Table 2(b) show the performance
deterioration in the vast majority of cases.

Given σ2 with those fixed values, Wilcoxon signed rank tests reject H0 with
p-values 0.0045, 0.0036, and 0.0057, respectively, showing significant difference
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Fig. 5. Training curves of ARConvL, LA, and CB Focal on CelebA (left) and iNatu-
ralist 2018 (right).

in predictive performance between ARConvL and the degraded versions with
non-adaptive σ2. Performance comparisons in terms of average ranks further
show the significance of such performance deterioration of the degraded AR-
ConvL. This means that adaptively learning σ2 throughout the training epochs
has significantly beneficial effect on predictive performance, demonstrating the
effectiveness of the adaptive margin on retaining good performance in multi-class
imbalance learning.
Effect of Loss for Class Centers To conduct this investigation, we produce
the degraded version of ARConvL (denoted as “ARC-C”) by eliminating the loss
for class centers 1

k

∑k
j=1 − log(p(Cj) from LM in Eq. (8). The loss of ARC-C in

accordance with LM is degraded as 1
n

∑k
j=1

∑n
i=1 − log(p(xi ∈ j). Performance

comparisons in terms of G-means between ARConvL in Table 1 and the degraded
ARC-C in Table 2(c) show the performance deterioration in almost all cases.

Wilcoxon signed rank test rejects H0 with p-value 3.38 ·10−4, showing signif-
icant difference in predictive performance between ARConvL and the degraded
ARC-C. Performance comparisons in terms of average ranks further show the
significance of such performance deterioration eliminating the loss for class cen-
ters, demonstrating the effectiveness of the loss for class centers in multi-class
imbalance learning.

4.5 Utility in Large-Scale Datasets

To demonstrate the proposed ARConvL can be utilized on large-scale real-world
datasets, we present training curves of ARConvL and the two most competitive
methods CB Focal [6] and LA [23] on two additional large-scale datasets, namely
CelebA [22] and iNaturalist 2018 [34]. For CelebA, only five non-overlapping
classes (blonde, black, bald, brown, and gray) are kept following previous work
[37]. Details of these datasets are shown in Section 1 of the supplementary ma-
terial. The input size is (64, 64, 3) for CelebA and (224, 224, 3) for iNaturalist
2018. We employ ResNet [30] with depth 56 as the backbone in this extra study.
The training batch size is set to 64; the total number of training epochs is set
to 100. We decay the learning rate by 0.1 at the 51-th and 81-th epochs.
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Training curves on those large-scale datasets are shown in Fig. 5. Fig. 5(a)
shows that ARConvL outperforms CB Focal across all training epochs; AR-
ConvL yields better or similar performance compared to LA and it can converge
faster than LA within 52 epochs. Fig. 5(b) shows similar experimental results:
ARConvL achieves better G-means at most training epochs and possesses better
convergence than its competitors. In particular, between the training epoch 52
and 78, LA and ARConvL achieve similar performance, and after the training
epoch 82, ARConvL outperforms LA. All methods confront with zero G-means
at some training epochs, meaning that they fail in detecting any example of some
class(es). Performance in terms of class-wise accuracy shows the same experi-
mental results and can be found in Section 3.4 of the supplementary material.
Therefore, experimental results on two large-scale datasets show the utility of
the proposed ARConvL over its competitors.

5 Conclusion

This paper proposes ARConvL for multi-class imbalance learning, which derives
class-wise regions in the latent feature space adaptively throughout training
epochs. Latent feature distributions can then be well depicted by class regions
without relying on any strict assumption. Based on the derived class regions, we
address the multi-class imbalance issue from two perspectives. First, an adaptive
distribution loss is proposed to optimize the class-wise latent feature distribu-
tion, by pushing down the upper-bound of the radii to approach the benchmark
radius, directly tackling the multi-class imbalance problem. Second, an adap-
tive margin cross-entropy loss is proposed by employing the defined margin as a
mediator to improve the discrimination between classes, further alleviating the
class imbalance problem.

Experimental results based on plenty of real-world image sets demonstrated
the superiority of our ARConvL to SOTA methods. Investigations on the per-
formance deterioration with respect to different imbalance ratios showed the
robustness of the proposed method. Ablation studies demonstrated the effec-
tiveness of the adaptive distribution loss and the adaptive margin cross-entropy
loss in the learning process. Experiments on two large-scale real-world image sets
showed the utility of ARConvL on large-scale datasets.

Future work includes additional experimental investigations to better under-
stand how data noise and missing data affect the performance of our proposed
method and the extension of ARConvL by having multiple regions assigned to
each class (instead of only one).
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