BEDCOE: Borderline Enhanced Disjunct Cluster Based
Oversampling Ensemble for Online Multi-class
Imbalance Learning

Shuxian Li*"¢, Liyan Song*®, Yiu-ming Cheung®** and Xin Yao®?:**

4Research Institute of Trustworthy Autonomous Systems, Southern University of Science and Technology
(SUSTech), Shenzhen, China.
®Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation, Department of Computer
Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, China.
“Department of Computer Science, Hong Kong Baptist University, Hong Kong SAR, China.

Abstract. Multi-class imbalance learning usually confronts more
challenges especially when learning from streaming data. Most ex-
isting methods focus on manipulating class imbalance ratios, dis-
regarding other data properties such as the borderline and the dis-
junct. Recent studies have shown non-negligible impact of disregard-
ing these properties on deteriorating predictive performance. Online
multi-class imbalance would further exacerbate such negative im-
pact. To abridge the research gap of online multi-class imbalance
learning, we propose to enhance the number of training times of
borderline samples based on the disjunct class-wise clusters that are
adaptively constructed over time for each class individually. Specif-
ically, we propose a borderline enhanced strategy for ensemble aim-
ing to increase the number of training times of samples neighboring
to borderline areas of different classes. We also propose to generate
synthetic samples for training based on the adaptively learned dis-
junct clusters that are maintained for each class individually online,
catering for online multi-class imbalance problem directly. These
two components construct the Borderline Enhanced Disjunct Cluster
Based Oversampling Ensemble (BEDCOE). Experimental studies
are conducted and demonstrate the effectiveness of BEDCOE and
each of its components in dealing with online multi-class imbalance.

1 Introduction

Learning with streaming data is very common in real-world appli-
cations which usually exposes to more severe challenges due to the
limited time and memory [20]. Online multi-class imbalance learn-
ing is one of the popular topics in the area of data stream learning,
for which some classes (minorities) own much fewer samples than
others (majorities). This issue can potentially cause performance de-
terioration, especially for minority classes [22, 35, 20].

There have been only a few existing approaches to deal with the
online multi-class imbalance issue, which can be grouped into three
categories [35]: data level approaches, algorithm level approaches,
and ensemble methods. Sampling methods are typically on the data
level, which balance data samples of different classes by oversam-
pling the minorities or/and undersampling the majorities in an online
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manner [32, 28]. Approaches of this category usually need to main-
tain a sliding window reserving recent training samples, increasing
the memory burden. Cost-sensitive methods are representative of the
algorithm level approaches, which handle online class imbalance by
setting different weights to training samples of different classes adap-
tively with time [26, 27]. Class imbalance ratio is usually utilized to
set the weights, so that samples from the same class will usually be
treated with the same weight values.

The third category of methods is the online ensemble, which have
shown to perform well for dealing with online multi-class imbalance
learning [35, 20]. The proposed method in this paper belongs to this
category. Methods of this category usually cooperate with sampling
approaches to directly cope with class imbalance issue [34, 32, §8].
Training samples are typically used multiple times to update the
model in sequence with the number of training times being derived
based on latest class imbalance ratios. However, duplicating a single
training sample multiple times would potentially overfit the model
especially in the neighboring data area of this duplication [17, 22].
Related studies have shown that data properties such as the border-
line and the disjunct would have non-negligible impact on predictive
performance of online learning approaches [24, 6, 8], which should
be especially taken into consideration when conducting the online
multi-class imbalance learning process.

To abridge the research gap of online multi-class imbalance learn-
ing, we propose the Borderline Enhanced Disjunct Cluster Based
Oversampling Ensemble (BEDCOE) method. First, the borderline
degree of each sample is defined based on the probabilities that this
sample can be classified into different classes. In this sense, sam-
ples with higher borderline degrees and lower class imbalance ratios
would be assigned with larger number of training times, contributing
to the borderline enhanced strategy. Then, disjunct clusters for each
class individually are constructed and traced by an online cluster-
ing algorithm to capture the disjunct property of data space. Multiple
synthetic samples can be produced based the combination among this
training sample and cluster centers of this class, which are used for
ensemble model adaptation, contributing to the disjunct cluster based
oversampling. The overall training procedures of the proposed BED-
COE will be presented in Section 3.1 and in Algorithm 1. The main
contributions of this paper are listed below:



1. We propose a novel borderline enhanced strategy for the online
ensemble that can derive the number of training times for each
sample individually so that training samples being closer to the
borderline with a lower class imbalance ratio would be empha-
sized, alleviating the online multi-class imbalance issue.

2. We propose a novel disjunct cluster based oversampling method
that is embedded into the online ensemble learning process to
adaptively generate synthetic samples surrounding the training
sample for model update, further alleviating the potential over-
fitting problem and catering for online multi-class imbalance.

3. We investigate the effectiveness of our BEDCOE and each of its
two components for dealing with online multi-class imbalance
problem experimentally based on a wide range of synthetic and
real-world data sets.

The remainder of the paper is organized as follows. Section 2
presents related work. Section 3 presents our proposed BEDCOE.
The experimental setup and results are discussed in Section 4. The
paper is concluded in Section 5.

2 Related Work

Methods for dealing with online multi-class imbalance problem can
generally be classified into three categories: data level approaches,
algorithm level approaches, and ensemble-based methods [35].

2.1 Data Level Approaches

Sampling methods are popular in dealing with class imbalance prob-
lem in the offline scenario [17, 10, 16], but they cannot be directly
adapted to the data stream learning. Revisions would be required for
adapting to the online learning scenario.

A sliding window reserving the most recent training samples usu-
ally needs to be maintained for oversampling such as online SMOTE
[32], generating synthetic samples using the training samples saved
in the sliding window. C-SMOTE [4] is a variant of SMOTE for
dealing with the binary imbalance streaming data, which actively
detected the concept drift by ADWIN [5] and applied SMOTE on
minority class samples stored in the most up-to-date sliding window.
For online binary classification, SRE [28] proposes a selection-based
resampling method to do oversampling or undersampling based on
the data property of saved recent samples. And IOSDS [3] replicates
samples that are not identified as noisy or borderline.

These methods mostly targeted on binary class imbalance problem
and need to maintain a sliding window to reserve relevant training
samples, increasing the memory burden.

2.2 Algorithm Level Approaches

Cost-sensitive methods are representative of this category. Setting
different weights for different classes is the key idea, where the
weights of minority classes are usually larger than that of majority
classes [17].

WOS-ELM [26] is the cost-sensitive version of the OS-ELM algo-
rithm [23], for which the class weights are set according to the class
sizes. VWOS-ELM [25] trains a series of WOS-ELM:s as base learn-
ers, and the final prediction is decided based on the weighted major-
ity voting. Also based on OS-ELM, WOS-ELMK [12] uses kernel
to avoid the non-optimal hidden node problem associated with OS-
ELM methods, PBG [31] uses G-mean performance to monitor the

concept drift and optimize the model in the learning process. Class
sizes are used in these methods to determine the sample weights. Al-
WSELM [27] is one of the state-of-the-art methods that can solve the
multi-class imbalance problem on data streams, which proposes an
improved weighting strategy based on the class sizes of recent data
samples.

Class sizes are the most widely used data property to determine
sample weights, for which samples of the same class are usually
treated equally. This approach cannot reflect other data properties
such as the borderline or the disjunct.

2.3  Ensemble Methods

Ensemble approaches have been shown to perform well for online
class imbalance learning [35, 20]. Popular examples include MOOB
and MUOB proposed in [34] to conduct online multi-class imbal-
ance learning. They employ a time-decay class size to continuously
derive class imbalance ratios, based on which the training times of
each training data can be derived. Another popular example is On-
line SMOTE Bagging [32], which needs to maintain a sliding win-
dow for each class individually so that relevant training samples can
be reserved for synthetic data generation.

Later on, Cano et al. [7] proposes Kappa Updated Ensemble
(KUE) to gain better diversity for base learners, in an attempt to fur-
ther improve prediction ability of online ensemble. After that, [8]
proposes an advanced method called ROSE to improve the robust-
ness of KUE. To directly deal with (binary- or multi-) class imbal-
ance, ROSE computes the imbalance ratio of each class based on the
recent samples to derive the training times of each sample for online
ensemble learning.

We can see that existing online ensemble methods have only re-
lied on class imbalance ratios to balance the multi-class imbalance
continuously over time; however, other data properties such as the
borderline and the disjunct have not been specifically dealt with
[6, 8, 30, 21]. Recent studies have shown that the borderline and the
disjunct have non-negligible impact on predictive performance of the
online model, and class imbalance would possibly exacerbate such
negative impact [6, 8, 30, 21]. Another potential issue for these on-
line ensemble methods is that they usually duplicate the same train-
ing sample multiple times, potentially causing overfitting [17, 22].

3 Borderline Enhanced Disjunct Cluster Based
Oversampling Ensemble (BEDCOE)

This section proposes Borderline Enhanced Disjunct Cluster Based
Oversampling Ensemble (BEDCOE) to specifically deal with the on-
line multi-class imbalance, abridging the research gap in this area.

3.1 Overall Test-then-Train Process of BEDCOE

Given a data stream { X} where ¢t € {1,2,- - } is the test time step
and X; € RY denotes the d-dimensional data feature arrived at time
step t, we use y; to denote the true label of X and y; € {1,--- ,c}
for ¢ > 2. We follow the conventional “test-then-train" online learn-
ing process to proceed BEDCOE where test sample arrives one by
one [14]. Specifically, given X arrived at ¢, the aim is to predict its
label with the latest model as 3 = H¢—1(X¢). Then, one can obtain
the true label y: before ¢ + 1, and the new training sample (X4, y+)
is used to update model H;—1(+) to He(-).

Algorithm 1 presents the training procedures of BEDCOE at a
given time step t. As shown in Line 1, we adopt the time-decay class



Algorithm 1 Training Procedures of the Proposed BEDCOE.

Algorithm 2 Borderline Enhanced Strategy.

Inputs:
(1) ensemble H,_1(-) with base learners fp,(-) form =1,--- , M;
(2) class size Qi1 = {wﬁ)l, cee ,w,ﬁi)l ;
(3) class-wise clusters {D£1_>1, e ,Dﬁc_)l} forc > 2;
(4) a new training sample (X¢, y¢).
1: Update class size 2,_1 — €2, according to Eqn. 1.
2: Compute class imbalance ratio {)\ﬁl), e )\Ec)} by Eqn. 2.
3: Update clusters DY) — D{") with (Xy, ys).
4: for each base learner f,,(-) do
5:  Derive training times K, of sample (X, y:) by Alg. 2 for

which the class imbalance ratio A = )\iy*).

6: if K¢ m > 1 then

7: Update [, (-) with (X¢, y¢).

8: Get cluster center(s) {C{,p, Sy Cé,?yt)} from Dt(yt),
where n,, is the number of clusters for class y;.

9: Generate synthetic training samples {(Xt(s), yi)} for s =
1,---, K¢m — 1, following Alg. 3.

10: for each (X, y,) do

11: Derive training times Kt(izl of sample (Xt(s), yt) by

Alg. 2 for which A = 1.

12: Update f,,(-) number of Kt(s,zl times using (X ), y1).

13: end for

14:  endif

15: end for

sizes O = {wﬁl), e ,wic)} proposed in [34] to trace the class im-

balance status continuously over time. They were used to quantify
the occurrence probability of each class and were updated as:

w® = 0. 0™ 4 (1—0)-[(Xe, k)], @)

where [(X¢, k)] is the indicator function equaling 1 if X belongs
to class k or equaling O if otherwise, and 6 is the time-decay factor
that is set to 0.9 in our paper following [34]. As shown in Line 2,
based on the time decay class size, multi-class imbalance ratios
{)\El), . ,)\gc)} are defined following [34] as:

)\ﬁk) - wmam/wgk)g (2)

k R
where wpmqr = maxj,_; wt( ). As shown in Line 3, clusters Dgﬁtf

that have been exclusively constructed for class y; are updated with
(X¢, y¢). This learning process can be proceeded by any online clus-
tering algorithm such as CluStream [1], DenStream [9], and DB-
Stream [15]. This paper opts for DenStream to construct clusters for
each class individually.

As shown in Line 5, the borderline degree p.m (X, y:) for data
(Xt, yt) is derived following Alg. 2 and is then used to decide the
training times K ., contributing to the borderline enhanced strat-
egy. When K; ,, > 1, this training sample is used to update base
learner f,,(-) (Line 7); then Ky, — 1 synthetic samples are gener-
ated by the latest clusters of the class y; (Line 8~9), contributing to
the disjunct cluster based oversampling method in Alg. 3. Learning
with synthetic samples follows the same procedures of the borderline
enhanced strategy as shown in Line 11~12. We detail the borderline
enhanced strategy and the disjunct cluster based oversampling in the
subsequent subsections individually.

3.2 Borderline Enhanced Strategy

This subsection presents the borderline enhanced strategy listed in
Line 5 and Line 11 of Alg. 1 to decide the training times of a given

Inputs:

(1) base learner fy,(+)

(2) sample (X, y);

(3) class imbalance ratio .
1: Compute borderline degree p., (X, y) by Eqn. 3.
2: Derive the training times K by Eqn. 4.

sample, based on which the online ensemble is updated multiple
times. Particularly, the number of training times for a training sam-
ple depends on how close it locates to the borderline being the area
samples of different classes overlap [6, 30].

Algorithm 2 presents the borderline enhanced strategy. We use
pm (X, k) to denote the prediction probability that data X is clas-
sified to class k by base learner f,,(-). The borderline degree of a
given sample (X, y) is formulated as:

pm(X,y) = exp (rgjicpm(X k) —pm(X,y) +1), (3

where maxr£y pm (X, k) quantifies the maximal probability that
fm(+) wrongly predicts X and larger value indicates higher mis-
classification possibility; p,, (X, y) is the prediction probability that
fm(+) correctly predicts X, and lower p.. (X, y) indicates that this
sample is more difficult to be correctly predicted by this base learner.
In this sense, a larger borderline degree pn, (X, y) of training sam-
ple (X, y) estimates a higher possibility that this data would locate
closer to the borderline, thus is anticipated to derive a higher training
times to facilitate the model to be more adapted to the neighboring
area of this training sample.

Given class imbalance ratio A and base learner fy,(-), the bor-
derline enhanced training time of sample (X, y) is formulated as a
random variable being sampled from Poisson distribution as:

K ~ Z(pm(X,y) - Poisson(})), @

where Z(-) is the rounding function to derive an integer. When
Poisson(\) samples out 0, K = 0 occurs meaning that (X, y) is
not used for training. Ultimately, each base learner f,,(-) would be
updated K times based on (X, y).

3.3 Disjunct Cluster Based Oversampling

Given training sample (X4, ) and the training times K ., derived
by Alg. 2, when K;,, > 1, base learner f,,(-) is firstly updated
with training sample (X¢, y¢), consuming 1 training time (Line 7 of
Algo. 1). This base learner is then updated with another K¢ ,,, — 1
synthetic variants of (X¢, y:) (Line 8~9 of Alg. 1). The reason for
not duplicating this training sample K ,, times is to alleviate the po-
tential issue of overfitting. Clusters ng) fork =1,---,care con-
structed to trace the disjunct within each class individually. Based on
these notations, we propose the disjunct cluster based oversampling
method in Algorithm 3.

We generate n,, temporary samples {X ¥} fori = 1,--- ,n,,
based on (X, y¢) and cluster center CQS? as:

XY =X, 4+a-(C - Xy), 5)

where o ~ U(0,1) and U(0,1) denotes the uniform distribution
ranging from 0 and 1. Based on them, we produce a synthetic vari-
ant X; of training sample X; by linearly incorporating (X, y¢) and
those temporary samples as:

Nyt

A_’ITL m (,-) (i)
X=X+ (1- .54 x
0=q7 Xt (=) Z,:l” : ©)



(3)
CYt

Figure 1. Illustration of the disjunct cluster based sampling method. Given
training sample (X¢,yt), we use {C’IE,?} for i = 1,2,3 to denote cluster
centers corresponding to class y¢. Temporary samples { X <i)} are generated
by Eqn. 5. A synthetic variant Xiis finally produced by Eqn. 6.

Algorithm 3 Disjunct Cluster Based Oversampling Method.

Inputs:

(1) index m of fm(+) and overall number M of base learners;

(2) training sample (X¢, y¢);

(3) center(s) {C’f,}), e C’;E?y”>} of cluster(s) in class y:, where n,,
is the number of learned cluster(s) in class ;.

1: Produce temporary samples XD fori=1,---, ny, by Eqn. 5.
2: Produce a synthetic variant X; of X; by Eqn. 6.

where we formulate the weight of temporary sample X ® by

SO 1/ dist(Xe, Cl)

j=1

and dist(Xq, Cé?) is the Euclidean distance between X; and Céi).
The heuristic m/M for each base leaner f,(-) in Eqn. 6 is delib-
erately designed to weight real data X; against temporary data cap-
tured in clusters. As a result, a base learner in a latter sequential order
(larger m /M) would tend to better adapt to the real data generation
status compared to the earlier one, producing the multi-scale simu-
lation of the data space. This would potentially help with predictive
performance by improving the diversity of online ensemble learning.
Algorithm 3 explains the disjunct cluster based oversampling method
aiming for generating a synthetic sample based on cluster centers of
the same class. Figure 1 illustrates the generation process given three
cluster centers.

Overall, such oversampling procedure repeats (K¢, — 1) times
to generate (K¢, — 1) synthetic samples {()?t(s)7 ye)} for s =
1,---, K¢m — 1, based on which base learner f,,(-) is updated se-
quentially (see Line 10~13 of Algorithm 1). Specifically, each syn-
thetic sample (X*,y;) is used to update base learner f,,(-) the
number of K t(i)n times based on the borderline enhanced strategy,

where K, t(izl is derived by Alg. 2 with the input A = 1. The reason
for setting class imbalance ratio A = 1 in this scenario is because
multi-class imbalance has been dealt with while deriving training
times K, for the real data (X¢,y:) and thus it is unnecessary to
overemphasize this issue for training on synthetic data.

4 Experimental Studies

This section aims to investigate the proposed BEDCOE from two
perspectives: performance comparisons against state-of-art methods
for online multi-class imbalance learning and the effectiveness of two
proposed components of our BEDCOE. Code is available online '.

1 Code: https://github.com/shuxian-li/BEDCOE

Table 1. Overview of the data set. “#Data" denotes the total number of sam-
ples within this data set, “#Initial" denotes the number of samples used for
data normalization and model initialization, #Fea denotes the number of fea-
tures, #Class denotes the number of classes, and IR denotes the overall static
imbalance ratio being computed as the ratio between the largest class size and
the smallest class size.

Data set ‘ #Data ‘ #Initial ‘ #Fea ‘ #Class ‘ IR ‘
Gaussian 20000 500 2 5 10.00
Abrupt 20000 500 33 6 15.70
Gradual 20000 3500 33 6 108.19
Incremental 20000 3500 33 6 39.95
Incremental-Abrupt 20000 3500 33 6 23.19
Incremental-Reoccurring 20000 3500 33 6 22.99
Elec 20000 500 8 2 1.29
Luxembourg 1901 200 31 2 1.06
NOAA 18159 500 8 2 2.19
Ozone 2534 200 72 2 14.84
Ecoli 332 150 7 6 28.60
Dermatology 358 200 34 6 5.55
Pageblocks 545 400 10 4 61.50
Thyroid 720 500 21 3 39.18
Yeast 1484 1000 8 10 92.60
Chess 533 200 5 3 10.17
Keystroke 1600 200 10 4 1.00
Outdoor 4000 1300 21 40 1.00
Powersupply 29928 500 2 24 1.00
Rialto 20000 500 27 10 1.00

4.1 Experimental Setup

This paper adopts 20 data sets to conduct experimental studies, which
include 6 synthetic data sets (Gaussian, Abrupt, Gradual, Incremen-
tal, Incremental-Abrupt, and Incremental-Reoccurring), 4 real-world
binary data sets (Elec, Luxembourg, NOAA, and Ozone), and 10
real-world multi-class data sets (Ecoli, Dermatology, Pageblocks,
Thyroid, Yeast, Chess, Keystroke, Outdoor, Powersupply, and Ri-
alto), covering a wide range of data properties for online multi-class
imbalance learning. Table 1 summarize their information. The initial
number of each data set is decided based on the requirement that each
class needs to contain training samples. The overall static imbalance
ratio of each data set outlines the class imbalance severity disregard-
ing the fact that the class imbalance ratio of each class is actually
varying throughout the data stream in the online learning scenario.
Data set Gaussian is produced based on multiple Gaussian distri-
butions synthetically; Ecoli, Dermatology, Pageblocks, Thyroid, and
Yeast are available in the Keel repository [2]; Elec, Luxembourg,
NOAA, Ozone, Chess, Keystroke, Outdoor, Powersupply, and Rialto
are available in the USP-DS repository [29].

We compare the proposed BEDCOE against 5 state-of-the-art on-
line multi-class imbalance learning approaches, including MOOB,
MUOB [34], Online SMOTE Bagging (“SmoteOB") [32], Al-
WSELM [27], and ROSE [8]. Except for AI-WSELM [23], Hoeffd-
ing trees [19] are adopted as base learners of online ensemble ap-
proaches, for yielding generally good predictive performance and be-
ing robust to various circumstances [33, 34, 32]. The total number of
base learners is set to 10, following the previous studies [34, 8]. For
Online SMOTE Bagging [32], the size of the sliding window is set
to 100 for each class. All methods follow the strict online learning
setup as explained in Sec. 3.1.

Prequential G-mean and balanced accuracy with fading factor 0.99
are chosen as the performance metrics for being popularly used in on-
line multi-class imbalance learning [35, 31]. Predictive performance
is evaluated based on the remaining samples after the initialization
number. Mean performance across 10 runs is conducted for compar-
isons.



We perform Friedman tests [11] for statistical comparisons be-
tween competing methods across data sets. The null hypothesis (HO)
states that all models are equivalent in terms of the predictive per-
formance metric. The alternative hypothesis (H1) states that at least
one pair of methods differ significantly. When HO is rejected, Holm-
Bonferroni correction [18] is conducted as the post-hoc test.

4.2 Performance Comparison
4.2.1 Overall Performance Across Time

We can see from Table 2(a) that in terms of G-mean, our proposed
BEDCOE performs the best in 9 out of 20 data sets, and the 2nd
best in 7 data sets. Friedman tests at the significance level 0.05 reject
HO with the p-value 1.50 x 10™*, showing that there is significant
difference between methods. Average ranks (“avgRank") across data
sets are reported in the last row of this table to show how well each
method performs compared to others across data sets. Average rank
of BEDCOE is 1.9, being the best (lowest) among all methods, indi-
cating that our method can generally perform the best across differ-
ent kinds of data streams. Post-hoc tests are then conducted to detect
whether BEDCOE has significant difference from the competitors,
for which BEDCOE is chosen as the control method. Post-hoc com-
parisons show that the proposed BEDCOE can significantly outper-
form all of the competitors.

It is worth noting that methods such as MOOB, MUOB, Al-
WESELM and ROSE report zero G-mean in some data sets such as
Yeast, Outdoor, and Powersupply. Further inspection found that those
“terrible" data sets have much fewer samples per class compared
to others. For example, the average sample size is 100 in Outdoor
compared to 400 in Keystroke. This issue becomes worse when con-
fronting online multi-class imbalance, which is the case of these data
sets. Such issue possibly results in terrible prediction performance
in terms of recall on minority classes especially when the method
cannot perform well. Whenever the method attains a very tiny (even
zero) recall on any of these minority classes, this would result in zero
G-mean. We can see shortly that predictive performance in terms of
balanced accuracy does not contain zero performance anymore.

We can also see from Table 3(a) that in terms of balanced accuracy,
the proposed BEDCOE performs the best in 9 out of 20 data sets, and
the second best in 9 out of 20 data sets. Friedman tests at the signif-
icance level 0.05 reject HO with the p-value 5.19 x 107, showing
that there is significant difference between methods. Average rank of
BEDCOE is 1.7, being the best (lowest) among all methods, indicat-
ing that our method can generally perform the best across different
kinds of data streams. Post-hoc tests are then conducted to investi-
gate whether BEDCOE has significant difference from the competi-
tors, for which BEDCOE is chosen as the control method. Post-hoc
comparisons show that the proposed BEDCOE can significantly out-
perform all of the competitors.

4.2.2  Continuous Performance Throughout Time

Figure 2 shows performance comparisons of the proposed method
against the competitors throughout time steps on two representative
data sets in terms of G-mean and balanced accuracy, respectively.
Results of other data sets show similar patterns and were omitted
for the space reason. We can see that the proposed BEDCOE can
usually outperform most of the other methods constantly at most time
steps in terms of both G-mean and balanced accuracy, respectively,
demonstrating the effectiveness of our approach in helping with the
performance improvement continuously over time.
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Figure 2. Continuous performance comparison throughout time on repre-
sentative data sets in terms of G-mean and balanced accuracy.

4.3 Ablation Studies

This section aims to study the effectiveness of each of the proposed
components of BEDCOE, including the borderline enhanced strat-
egy proposed in Sec. 3.2 and the disjunct cluster based oversam-
pling method proposed in Sec. 3.3. To this end, we respectively re-
move each of the two components from BEDCOE, leading to BED-
COE eliminating the borderline enhanced strategy (“BEDCOE-BE")
and BEDCOE eliminating the disjunct cluster based oversampling
method (“BEDCOE-DC"), which would be individually compared
to BEDCOE. If predictive performance declined significantly after
eliminating one component, we can conclude that this component is
crucial in dealing with online class imbalance.

Table 2(b) and Table 3(b) report predictive performances of the
two variants in terms of G-mean and balanced accuracy, respec-
tively. BEDCOE is chosen as the control method and is com-
pared with BEDCOE-BE and BEDCOE-DC, individually. Wilcoxon
signed rank tests [36] are conducted to detect whether BEDCOE has
significant difference from each of the variants.

4.3.1 Effectiveness of Borderline Enhanced Strategy

Effectiveness of borderline enhanced strategy with respect to deal-
ing with online multi-class imbalance is studied via performance
comparison between BEDCOE and BEDCOE-BE. Specifically, the
borderline enhanced strategy is eliminated by replacing Ky ,, ~
Z(pm(X¢,yt)-Poisson(AY')) with K¢ ~ Poisson(\Y*) (Line 5
of Alg. 1) and replacing IA(t(izl ~ Z(pm (Xt,yt) - Poisson(1)) with
IA{t(ST)n ~ Poisson(1) (Line 11 of Alg. 1) individually.

We can see from the first column of Table 2(b) that in terms of
G-means, BEDCOE-BE performs worse than BEDCOE in 15 out
of 20 data sets. Wilcoxon signed rank test rejects HO with p-value
0.01, meaning there is significant difference between BEDCOE and
BEDCOE-BE. Average rank of BEDCOE-BE (1.75) is worse than
that of BEDCOE (1.25), meaning that BEDCOE-BE is significantly
inferior to BEDCOE. This indicates that eliminating the borderline
enhanced strategy would result in significant decline in predictive
performance in terms of G-mean, showing the effectiveness of the



Table 2. Performance comparison in terms of G-mean (%). Each entry is the mean+std performance across 10 runs. The best performance on each data set
is highlighted in bold, and the 2nd best performance is highlighted in italic. The last row lists the average ranks (avgRank) of each model across data sets.
Significant difference against BEDCOE is highlighted in yellow. Part (b) reports the ablation results of the proposed BEDCOE against its variants.

(a) Performance Comparison

(b) Ablation Studies

Data set MOOB MUOB SmoteOB AL-WSELM ROSE BEDCOE \ \ BEDCOE-BE | BEDCOE-DC
Gaussian 39.024439 | 4311148 | 63.97+£0.54 | 674042042 | 67.41+1.04 | 72.6610.53 39.04+£2.80 | 68.40£1.91
Abrupt 59.56+0.26 | 56.88+0.53 | 53.114£225 | 66.5210.46 1.66-£0.12 59.6841.16 61.254+045 | 61.2941.27
Gradual 40.58+4.96 | 3620+2.82 5.0649.87 58174098 | 24764832 | 25984920 37774328 | 35.0840.74
Incremental 44.0640.68 | 40984099 | 33.75+0.85 | 41.10+0.61 48.774130 | 54.16+0.85 45834032 | 51.78+1.24
Incremental-Abrupt 40.1540.62 | 45444140 | 31.1140.69 | 43.14+084 | 47.71+0.88 | 58.104-0.37 42974040 | 52.67+0.32
Incremental-Reoccurring | 42.704£0.32 | 46.624120 | 37.64+4.02 | 43744082 | 49.9740.72 | 56.004£0.54 44804048 | 53.360.34
Elec 86714046 | 84.0740.60 | 84.15£045 | 71.104£7.32 | 91.04+0.13 | 90.8440.15 85.614£0.57 | 91.5140.23
Luxembourg 99.9940.02 | 98.45+0.36 | 99.964+0.04 | 90.24+0.84 | 99.7540.02 | 100.004-0.00 99.9740.06 | 100.002-0.00
NOAA 70.84:£0.37 | 69.010.80 | 70.1040.17 | 79.1740.10 | 74.46+0.22 | 72584042 70.57+£0.32 | 72.9240.49
Ozone 50474+5.66 | 78184074 | 76.5440.14 | 70.73+£1.63 | 62.63£1.21 66.6142.63 77224081 | 64.66+4.12
Ecoli 82734083 | 579+11.80 | 76.53+3.63 | 74474136 | 50944224 | 81.89+0.74 82.42+1.03 | 83.1540.81
Dermatology 90.8741.55 92.2941.09 | 94284137 | 92.15+£095 | 79.514+040 | 91.66+1.30 93.83+1.33 | 88.74+1.02
Pageblocks 80.8840.94 | 24.85+18.19 | 0.642128 69.554+125 | 67.98+0.16 | 86.1241.61 83434164 | 76.69+1.39
Thyroid 92.314+0.64 | 54.61420.84 | 52454677 | 54.814£3.07 | 61204476 | 91.5745.38 711441524 | 93.37+2.24
Yeast 0.00-0.00 0.00:0.00 12.1748.88 | 47.43+0.77 | 83941282 | 16.89+21.97 0.00:0.00 0.0040.00
Chess 55794273 | 52.9342.87 | 52434541 56.27+1.16 | 26464998 | 61.6613.56 54.3040.67 | 60.34+2.27
Keystroke 82294192 | 82.614234 | 81.94:+£1.42 | 92344020 | 86.780.84 | 90.60+-0.97 84.01+£2.16 | 86.63£1.80
Outdoor 0.00-£0.00 0.00-£0.00 28.7541.57 | 18.074£0.15 | 14.03+13.66 | 49.82+1.10 0.00:0.00 0.600.60
Powersupply 0.00-0.00 0.002-0.00 8.3241.48 0.0040.00 0.00-0.00 3.9240.92 0.004-0.00 1.2640.50
Rialto 11.5340.42 12354076 | 62.90+£0.72 | 48484029 | 4633+2.14 | 63.09+1.14 11444051 | 44.85+2.06
avgRank 3.875 4325 4.1 3.075 3725 1.9 125vs 175 | 1.325 vs 1.675

Table 3. Performance comparison in terms of balanced accuracy (%). Each entry is the mean=+std performance across 10 runs. The best performance on each
data set is highlighted in bold, and the second best performance is highlighted by in italic. The last row lists the average ranks (avgRank) of each model across

data sets. Significant difference against BEDCOE is highlighted in yellow. Part (b) reports the ablation results of the proposed BEDCOE against its variants.

(a) Performance Comparison

(b) Ablation Studies

Data set MOOB MUOB SmoteOB AI-WSELM ROSE BEDCOE \ \ BEDCOE-BE | BEDCOE-DC
Gaussian 56.95+1.96 | 49.84+077 | 68584035 | 69.184035 | 72834047 | 75.1540.40 57014122 | 72.96+1.19
Abrupt 64224022 | 62012040 | 62014073 | 69.3240.25 | 16594008 | 65014049 64.75+£036 | 63.96:£0.72
Gradual 5846+0.60 | 49.69+124 | 58284036 | 66.36+0.73 | 59394081 | 63.03+0.46 60.52+0.54 | 62.19+0.63
Incremental 52204039 | 47.3740.61 | 50.80+0.52 | 54574037 | 5539+0.86 | 57.7940.64 52724026 | 56.28-+0.86
Incremental-Abrupt 50.58£0.38 | 51.5140.96 | 50.9440.51 53.40+0.39 | 56.20+0.50 | 61.4040.36 51314028 | 58.4040.27
Incremental-Reoccurring | 51.4740.19 | 51.6840.89 | 51294036 | 53.63+0.48 | 56.97+0.74 | 60.1940.37 52.084+0.35 | 58.71+0.22
Elec 87.20+£0.41 84944046 | 84924038 | 75664271 | 91154012 | 91.03+0.14 86.31£0.40 | 91.62+0.23
Luxembourg 99.99+0.02 | 98454036 | 99.96:£0.04 | 90.26:0.84 | 99.754+0.02 | 100.003-0.00 99.97+0.06 | 100.00=£0.00
NOAA 72.00+£029 | 70552043 | 71.01£0.16 | 79.36+0.10 | 75004021 | 73.404+0.38 71754029 | 73.36+£0.45
Ozone 63.18+£2.31 | 78.74+0.73 | 77.74+0.13 | 72204129 | 6843+0.72 | 70.77+1.78 77.961+0.90 | 69.104+2.86
Ecoli 83.264+0.78 | 45704851 | 79.53+1.85 | 7580+156 | 63.00+2.74 | 82.51+0.69 83.154+0.79 | 83.5410.80
Dermatology 92.16£1.04 | 92574110 | 94744112 | 92364091 | 80494037 | 92.70+0.89 94.344+1.04 | 90.79+0.63
Pageblocks 83.16+0.68 | 47.92+11.24 | 55444168 | 7127+123 | 704340.16 | 86.98+1.33 8535+1.17 | 80.171.01
Thyroid 92.49+0.61 | 64741009 | 61.04+472 | 59.78+238 | 69.14+2.19 | 92.11+4.72 74.85+12.00 | 93.54-42.08
Yeast 55.64+0.67 | 10224060 | 35.8843.05 | 51.824+1.20 | 41.76+1.72 | 58.04+1.18 55.5640.57 | 54.88-+0.50
Chess 57.944£2.17 | 55244217 | 555143.14 | 57.56+1.02 | 50.86+1.56 | 63.59+3.14 57294050 | 62.44+1.59
Keystroke 8276+1.72 | 83.13+223 | 8291+126 | 92414020 | 87.01+0.79 | 90.70+0.96 84.34+2.00 | 86.87+1.70
Outdoor 66.91+0.37 4.160.46 54404056 | 43.05+£031 | 49.76+138 | 76.9940.63 67.60+£025 | 71.10+0.35
Powersupply 16.07-£0.08 16.1540.08 | 17.7840.12 | 15.3540.11 14284032 | 16.3240.13 16.06+£0.07 | 15.9140.05
Rialto 27394022 | 27.90+049 | 68.561+0.60 | 51574034 | 54204137 | 67.00+0.98 27.50+037 | 53.23+1.79
avgRank 3.65 475 3.85 34 3.65 1.7 1.15vs 1.85 | 1.175 vs 1.825

borderline-enhanced strategy in dealing with online multi-class im-
balance.

We can also see from the first column of Table 3(b) that in terms of
balanced accuracy, BEDCOE-BE performs worse than BEDCOE in
17 out of 20 data sets. Wilcoxon signed rank test rejects HO with p-
value 0.0025, meaning there is significant difference between BED-
COE and BEDCOE-BE. Average rank of BEDCOE-BE (1.85) is
worse than that of BEDCOE (1.15), meaning that BEDCOE-BE is
significantly inferior to BEDCOE. This indicates that eliminating the
borderline enhanced strategy would result in significant decline in
predictive performance in terms of balanced accuracy, showing the
effectiveness of the borderline enhanced strategy in dealing with on-

line multi-class imbalance.

Moreover, we illustrate continuous performance throughout time
in Figure 3 in terms of G-mean and balanced accuracy, respectively.
We can observe similar results that eliminating the borderline en-
hanced strategy would result in the performance decline at most test
steps constantly, demonstrating the effectiveness of borderline en-
hanced strategy. Therefore, we conclude that the borderline enhanced
strategy plays an important role in dealing with online multi-class
imbalance and should not be eliminated from BEDCOE.
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Figure 3. Continuous performance comparison throughout time on repre-
sentative data sets in terms of G-mean and balanced accuracy.

4.3.2  Effectiveness of Disjunct Cluster Based Oversampling

Effectiveness of disjunct cluster based oversampling method with re-
spect to dealing with online multi-class imbalance is analyzed via
the performance comparison between BEDCOE vs BEDCOE-DC.
Specifically, the disjunct cluster based oversampling is eliminated by
replacing Line 7~13 of Alg. 1 by the procedure that updates base
learner fp,(-) with (X, y¢) the number of K3 ,, times.

We can see from the second column of Table 2(b) that in terms
of G-mean, BEDCOE-DC performs worse than BEDCOE in 13 out
of 20 data sets. Wilcoxon signed rank test rejects HO with p-value
0.0112, meaning that there is significant difference between BED-
COE and BEDCOE-DC. Average rank of BEDCOE-DC (1.675) is
worse than that of BEDCOE (1.325), meaning that BEDCOE-DC is
significantly inferior to BEDCOE. This indicates that eliminating the
disjunct cluster based oversampling would result in significant per-
formance decline in terms of G-mean, showing the effectiveness of
the disjunct cluster based oversampling method in dealing with on-
line multi-class imbalance.

We can also see from the second column of Table 3(b) that in terms
of balanced accuracy, BEDCOE-DC performs worse than BEDCOE
in 16 out of 20 data sets. Wilcoxon signed rank test rejects HO with p-
value 0.00148, meaning there is significant difference between BED-
COE and BEDCOE-DC. Average rank of BEDCOE-DC (1.825) is
worse than that of BEDCOE (1.175), meaning that BEDCOE-DC
is significantly inferior to BEDCOE. This indicates that eliminating
the disjunct cluster based oversampling would result in significant
performance decline in terms of balanced accuracy, showing the ef-
fectiveness of the disjunct cluster based oversampling in dealing with
online multi-class imbalance.

As shown in Figure 3, we can observe similar results that elim-
inating the disjunct cluster based oversampling would result in the
performance decline at most test steps constantly, demonstrating the
effectiveness of disjunct cluster based oversampling method. There-
fore, we conclude that the disjunct cluster based oversampling plays
an important role in dealing with online multi-class imbalance and
should not be eliminated from BEDCOE.

4.4 Further Discussion

Computational and space complexity: The computational com-
plexity of our proposed BEDCOE is O(M x N), where M denotes
the number of base learners and N denotes the data set size, being the
same to MOOB (the most popular work) [34] and ROSE (the most
recent work) [8].

We would like to highlight that, the same as MOOB, our BED-

COE follows the strict online learning scenario where no previous
data is allowed to store; in contrast, ROSE requested the storage of a
sliding window of data of size w. Therefore, the storage complexity
is O(d) BEDCOE and MOOB, and is O(w x d) for ROSE, where d
denotes the number of data features. Overall, our BEDCOE is com-
putationally efficient with low requirement of storage accumulation,
being competitive to current online multi-class imbalance methods.
Considering the generally better predictive performance, it is recom-
mended to adopt BEDCOE for dealing with online multi-class im-
balance problem.
Potential limitation of BEDCOE: Considering the overall static
imbalance ratio (IR) in Table 1, we further analyze the Spearman
correlation[13] between the prediction performance of BEDCOE and
IRs across data sets, being -0.2289 (weak) in terms of G-Means and -
0.3184 (weak) in terms of balanced accuracy. This indicates there is a
weak negative correlation between the prediction performance of our
proposed method and the overall static imbalance ratio of a data set.
This means that our BEDCOE, similar to many other existing online
multi-class imbalance methods, may confront the limitation of pre-
dictive performance for data sets with higher overall static imbalance
ratios.

5 Conclusions

This paper proposed Borderline Enhanced Disjunct Cluster-based
Oversampling Ensemble (BEDCOE) method to deal with the online
multi-class imbalance issue. Specifically, the borderline enhanced
strategy was proposed to increase the number of training times of
the sample that is closer to the borderline, alleviating the online
multi-class imbalance issue; the disjunct cluster based oversampling
method was proposed to produce multiple synthetic samples for the
real training data based on the clusters especially constructed for this
class, alleviating the potential issue of overfitting compared to learn-
ing with the duplication of the same training sample multiple times.

We conducted systematic experimental investigation on the pro-
posed BEDCOE based on 20 synthetic and real-world data sets. Ex-
perimental results demonstrated the superiority of BEDCOE over
state-of-the-art online multi-class imbalance methods in achieving
significantly better predictive performance in terms of both G-mean
and balanced accuracy, respectively. Continuous predictive perfor-
mance throughout time also showed the superior performance of
BEDCOE against competitors at most test steps constantly. By elimi-
nating each of the proposed components from BEDCOE, we induced
two degraded variants, namely BEDCOE-BE and BEDCOE-DC. Ex-
perimental analyses demonstrated the effectiveness of each of the
proposed components in dealing with the online multi-class imbal-
ance issue.

Future work includes further investigating how label noise, miss-
ing data, and high feature dimension affect the performance of our
proposed method and extending BEDCOE to better adapt to varying
conditions of data sets.
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