
In Pursuit of the Best Detection of Positive Data
Under User’s Concern on False Alarm

1st Cong Teng, 2nd Liyan Song∗
1 Research Institute of Trustworthy Autonomous Systems, Southern University of Science and Technology, China

2 Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation,
Department of Computer Science and Engineering, Southern University of Science and Technology, China

Shenzhen, China
12132358@mail.sustech.edu.cn, songly@sustech.edu.cn

Abstract—Just-In-Time Software Defect Predict (JIT-SDP) has
been a popular research topic in the literature of software
engineering. In many practical scenarios, software engineers
would prefer to pursue the best detection of defect-inducing
software changes under the concern of a given false alarm
tolerance. However, there have been only two related studies
in the Machine Learning (ML) community that are capable of
tackling this constraint optimization problem. This paper aims to
study how can we utilize the existing ML methods for addressing
the research problem in JIT-SDP and how well do they perform
on it. Considering the fact that the objective and the constraint
are not differentiable, a Differential Evolution (DE) algorithm is
by nature suitable for tackling this research problem. Thus, this
paper also aims to investigate how can we propose a novel DE
algorithm to better address the constraint optimization problem
in JIT-SDP. With these aims in mind, this paper adapts the ML
methods with a spared validation set to facilitate the constraint
learning process, and it also proposes an advanced DE algorithm
with an adaptive constraint to pursue the best detection of the
positive class under a given false alarm. Experimental results
with 10 real-world data sets from the domain of software defect
prediction demonstrate that our proposed DE based approach
can achieve generally better performance on the constraint
optimization problem, deriving better classification models in
terms of both objective and the constraint.

Index Terms—differential evolution, the constraint optimiza-
tion problem, machine learning, false alarm, just-in-time software
defect predict, software engineering

I. INTRODUCTION

In the process of software development and maintenance,
software defects are inevitable, and once they cannot be
detected and fixed in time, software quality would be largely
affected, causing poor user experience and even resulting
in significant economic losses [1]. For example, a plane’s
navigation system failure would possibly lead to a catastrophic
airplane crash. Research has shown that the cost of defective
software detection and repair accounts for 50% ∼ 75% of
the total development cost [2]. Therefore, identifying software
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defects as soon as possible is very important for improving
the software quality and safety in practice.

Just-In-Time Software Defect Prediction (JIT-SDP) is suit-
able for these application scenarios [1], [3]. It proceeds on
the fine-grained software change level that is submitted by
developers as a unit. Software changes that introduce defects
in the software system are defect-inducing, and those that do
not cause future defect are clean. This fine-grained predictive
technology makes it easier and more instant for software
developers to detect software defects and trace them back,
improving the software quality and safety in the real-world
application scenarios.

JIT-SDP can be modeled as a binary classification problem,
where defect-inducing software changes belong to the positive
class, and clean ones belong to the negative class [3]. JIT-SDP
aims to detect defect-inducing software changes as many as
possible while not to induce too high false alarm of the clean
software changes. For this, we can set up the objective to
pursue the best recall of the positive class under the concern
of a given false alarm constraint on the negative class.

We use D = {(Xi, yi), i = 1,. . . ,m} to denote a data
set of software changes, where Xi ∈ Rd is a d-dimensional
feature vector associating to a software change, yi ∈ { 0, 1}
is the class label being “+1” for a defect-inducing software
change and “0” for a clean one. Software changes in D are
chronological, meaning that (Xi+1, yi+1) comes after (Xi, yi)
at the commit time for any i ∈ {1, · · · ,m}. Based on these
notations, our research problem can be formulated as

max Recall(f)

s.t. False alarm(f) ≤ τ,
(1)

where f(·) denotes a binary classifier for JIT-SDP that is
trained on D , and τ denotes a false alarm tolerance given
by (e.g.) project managers or software developers in software
development organizations.

Different practical scenarios may have different levels of
false alarm tolerance, giving rise to different pressure on the
pursuit of positive data detection. For example, the aerospace
industry usually prefers a higher recall to detect software
defects as many as possible for the safety purpose and has
a relatively heavier pressure on the false alarm. Whereas,
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as game companies can rely on players’ feedback to detect
software defects throughout the stage of software development
and maintenance, they could set up a lower recall, anticipating
the assistance from public players, and establish a lighter false
alarm pressure to save human cost. Therefore, this paper aims
to investigate how to pursue the best detection of positive class
under user’s concern on false alarm.

To the best of our knowledge, there have been only two
Machine Learning (ML) based approaches [4], [5] that can
handle the constraint optimization problem in Eq. (1). Daven-
port et al. [4] trained a classifier disregarding the constraint,
and then adjusted the classification threshold to find the largest
false alarm in line with the given constraint. In this paper, we
call their method the “shift threshold approach”. Broadwater
et al. [5] coped with the constraint via the adjustment of the
loss function that gradually reduced the false alarm until a
given constraint was met. In this paper, we call their method
the “dynamic loss approach”.

However, there has been no study investigating how well
existing ML methods can perform on the constraint optimiza-
tion problem of JIT-SDP. As will be discussed in Sec. VI-A,
directly applying these ML methods to the research problem of
Eq. (1) in JIT-SDP cannot obtain good performance in terms of
satisfying the given constraint. To tackle this issue, we propose
to adapt these two methods by employing a spare validation
set based on which we can facilitate their techniques in dealing
with the constraint.

Moreover, considering that both the objective and the con-
straint of the research problem are not differentiable, evolu-
tionary algorithms, such as Differential Evolution (DE) [6],
are by nature suitable to tackle this problem. Accordingly, we
aim to propose an alternative approach to address the research
problem based on the DE framework, which may have the
potential to gain better recall while have higher probability for
meeting a given false alarm constraint. We name our approach
as an “advanced DE algorithm with an adaptive constraint”.

This paper aims to investigate the way to detect more defect-
inducing software changes under user’s concern on a certain
false alarm. We answer the following research questions:

RQ1 How well can existing (adapted) ML methods perform
on the constraint optimization problem in JIT-SDP?

RQ2 How can we propose a novel approach based on the DE
framework to better address the constraint optimization
problem and how well does our approach solve the
research problem in JIT-SDP?

Our main contributions are:

• we introduce and adapt the existing ML based approaches
to solving the research problem (Eq. (1)) in JIT-SDP by
proposing a spare validation set;

• we proposes an advanced DE algorithm with an adaptive
constraint, and experimentally justifies its effectiveness
in providing good prediction on recall and meeting the
constraint of false alarm.

II. BACKGROUND AND RELATED WORK

A. Just-In-Time SDP

Kim et al. firstly presented the idea of JIT-SDP [7], which
was later given by this formal name by Kamei et al. [3].
Compared with the traditional software defection prediction
that is on the level of coarse-grained files, modules, or pack-
ages [8]–[10], JIT-SDP predicts software changes submitted by
developers. It has three features: fine-grained, real-time, and
easy traceability [1]. JIT-SDP focuses on fine-grained software
changes so that developers can spend less time and effort
reviewing software changes that are predicted to be defec-
tive than coarse-grained SDP. JIT-SDP can predict software
changes as soon as they are submitted, while the developer is
still impressed with the changes they just submitted, which
makes it easier to fix defects. At the same time, software
changes contain the information of the submitter, which can be
traced back to the submitter during defect repair, facilitating
better analysis and repair.

Kamei et al. [3] summarized 14 basic features of software
change that were shown to perform well in JIT-SDP. These
features can be divided into five groups including diffusion,
size, purpose, history and experience. These features of differ-
ent dimensions reflect the important information of software
changes, which are of great significance.

JIT-SDP is chronological, and the generation of samples of
software changes is in a chronological order. In the process
of prediction, future samples should not be used to predict
the past data, otherwise the performance of the model will be
optimistic [11]. Meanwhile, the nature of the defect-inducing
changes will change over time [12], so new software changes
should be predicted using new data generated recently.

A variety of classification models have been applied to JIT-
SDP, such as Hoeffding tree [13], random forest [14], and deep
learning approaches [15]. Among them, the logistic regres-
sion [16] is a simple model that has been widely used in JIT-
SDP [3], [17]–[19]. This paper adopt the logistic regression
model as the base model to carry out a comparative study
between different approaches.

B. Existing Methods in the ML Community

As mentioned in Section I, to the best of our knowledge,
there are two classification approaches for false alarm con-
straint in machine learning, for which we name as the shift
threshold approach [4] and the dynamic loss approach [5].

The shift threshold approach manipulates the false alarm of
the negative class by adjusting the classification threshold of
the model. Classification threshold is an important parameter
in the model. A linear model will produce an output value after
computing the input data. When the output value is greater
than the classification threshold, the data will be classified
into the positive class, otherwise it will be classified to the
negative class. After the model is trained, the shift threshold
approach adjusts the classification threshold of the model to
find the classification threshold of the maximized objective
function that meets the false alarm constraint. The best shifted

338Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on January 10,2023 at 13:05:25 UTC from IEEE Xplore.  Restrictions apply. 



threshold is used as the final classification threshold of the
model to predict future software changes.

The dynamic loss approach manipulates the false alarm of
the negative class by dynamically adjusting the loss function
of the model. Specifically, a false alarm penalty term is added
to the loss function of the model. If the trained model does not
meet the false alarm constraint, the weight of the false alarm
penalty term is increased and the training is conducted again.
The process is repeated until the model meets the constraint.

C. Evolutionary Algorithm
The evolutionary algorithm is a global optimization ap-

proach. It has high robustness and wide applicability. For
the complex problems that are difficult to be solved by
traditional optimization algorithms, evolutionary algorithm can
effectively deal with them without the limitation of problem
nature [6].

There have been some studies that used the evolutionary
algorithm in SDP or JIT-SDP. Some work uses evolutionary
algorithms for feature selection [20]–[22]. Some work uses
evolutionary algorithms to search for model parameters [23],
[24], and the models with the selected model parameters are
then used for prediction. In this case, the evolution process
replaces the traditional training algorithm of classification
models. This paper follows the latter approach, considering
the weights and biases of the logistic regression model as
an individual. Since the representation of an individual is
a real number vector, some evolutionary algorithms are not
applicable. In this paper, Differential Evolution (DE) [25] is
adopted for evolution.

III. THE ADAPTATION OF ML-BASED APPROACHES

To the best of our knowledge, there have been only two
machine learning based approaches for solving the problem
of Eq. (1). In this paper, we call the two methods the shift
threshold [4] and the dynamic loss [5], respectively. However,
as will be discussed in Sec. VI-A, our experimental results
showed that adopting the initial setup of these approaches can
usually fail the constraint. Our conjecture is that due to the data
shift of JIT-SDP, training set can be obsolescent to construct
the models that are then used for future prediction on the
test set. Therefore, we propose to spare a validation set to
facilitate the searching direction of the classification threshold
for the shift threshold approach and the regulation term for
the dynamic loss approach, leading to their adapted versions.

This paper adapts the existing ML-based approaches for
solving the problem in Eq. (1) with the logistic regression
model that has been popularly used in JIT-SDP [3], [17], [18].
Particularly, we refer to the Receiver Operating Characteristic
(ROC) curve [26] to search the classification threshold of
the shift threshold approach, and modify the loss function
of logistic regression to set the false alarm penalty for the
dynamic loss approach.

A. The Adapted Shift Threshold Approach
Logistic regression performs linear calculation of the input

features, then uses Sigmoid function to map the calculated

values to between 0 and 1. Ultimately, the classification
prediction is conducted by comparing the output against the
classification threshold as:

ŷ =

{
0 pr ≤ µ

1 pr > µ
(2)

where µ is the classification threshold, pr is the probability
value calculated by the Sigmoid function, and ŷ denotes
the predicted label. Specifically, if pr is greater than the
classification threshold µ, the data is classified to the positive
class; if pr is less than the classification threshold, the data
is classified to the negative class. Conventionally, the logistic
regression model has a classification threshold of 0.5.

The core idea of the shift threshold approach is to find the
maximum recall classification threshold that meets the false
alarm constraint after the model is trained, and take it as
the classification threshold of the model. Given a training set
Dtrain and a validation set Dvalid, we present the training
process of the adapted shift threshold approach with the
following steps.
Step 1 Train a logistic regression model Mo(·) based on the

training set Dtrain.
Step 2 Evaluate the ROC curve of Mo(·) on Dtrain, each

point of which corresponds to recall, false alarm, and
a classification threshold µi.

Step 3 Sort {µi} in an ascending order. Find the maximal
recall whose false alarm meets the constraint, and
adopt the corresponding classification threshold µtrain.

Step 4 Repeat Step 2 and Step 3 on the validation set Dvalid

to get the corresponding classification threshold µvalid.
Step 5 Choose the smaller one between µtrain and µvalid as

the final classification threshold µuse.
Step 6 Adjust Mo(·) to get the final classification model

Mused(·) with the classification threshold µuse.

B. The Adapted Dynamic Loss Approach

The dynamic loss approach controls the false alarm by
dynamically adjusting the loss function of the classification
model. The loss function of a logistic regression model is
formulated as:

J(θ) = − 1
m

m∑
i=1

yi log(σ(θT ·Xi))

+(1− yi) log(1− (σ(θT ·Xi))),
(3)

where θ represents the parameters of logistic regression model,
X denotes input features, y is the label of the input data, and
σ(·) denotes the Sigmoid function.

We can see that the loss function Eq. (3) can be divided into
two parts. The first part contains yi log(σ(θT ·Xi) relating to
the positive class, and it is valid for y = 1. Conventionally, the
higher its value, the higher the recall performed by the model.
The second part contains (1−yi) log(1−(σ(θT ·Xi))) relating
to the negative class, and it is valid for y = 0. Conventionally,
the higher its value, the lower the false alarm of the model.

The core idea of the dynamic loss approach is to control
the model’s false alarm by adding a false alarm penalty term
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to the model’s loss function dynamically. With this in mind,
the second part of the loss function Eq. (3) can be regarded
as the false alarm penalty. The heavier the penalty is, the
lower the false alarm is. Meanwhile, the remaining part is
positively related to recall, which is the objective of the
research problem in Eq. (1). Therefore, the loss function of
the logistic regression model can be rephrased as:

J(θ) = − 1
m

m∑
i=1

yi log(σ(θT ·Xi))

+λ(1− yi) log(1− (σ(θT ·Xi))).
(4)

Specifically, we put an extra parameter λ to the second part of
the loss function Eq. (3) as the penalty coefficient to pursue
the constraint commitment. Given a training set Dtrain and a
validation set Dvalid, we present the training process of the
adapted dynamic loss approach with the following steps.
Step 1 Initialize λ with 0 and the model parameter with θ = 0.
Step 2 Train the logistic regression model from the current

parameter θ based on the loss function Eq. (4), for
which the new model is denoted as θ′.

Step 3 Set θ = θ′, λ = λ+∆λ.
Step 4 If the model’s false alarm on Dtrain and Dvalid does

not meet the constraint, return Step 2; else, go Step 5.
Step 5 Return the learned model with parameters θ.

Particularly, ∆λ is the changing value of the penalty coef-
ficient λ. A large ∆λ would cause faster drop in both false
alarm and recall; whereas a small ∆λ would probably make
the algorithm hard to converge. In this paper, ∆λ is set to
0.05 as the trade-off between the two issues. Moreover, the
simple random oversampling technique [27] is adopted in this
adapted approach to tackle the class imbalance issue.

IV. AN ADVANCED DE WITH AN ADAPTIVE CONSTRAINT

This section aims to propose an advanced DE approach for
the constraint optimization problem of Eq. (1), for which can
adaptively tune the constraint value to pursue a good detection
of defect-inducing changes while meet the predefined con-
straint of false alarm. We will first introduce how to tackle
the constraint optimization problem based on the conventional
DE framework, and then present the specialized treatment on
the constraint in terms of an adaptive constraint algorithm.

A. The Framework of An Advanced DE with An Adaptive
Constraint

To solve the optimization with constraint in Eq. (1), we
set our searching framework based on the conventional DE
algorithm and opt for logistic regression models as individuals
of the population to perform the classification task within the
problem. A logistic regression model is represented as:

ŷ = σ(b+ w1x1 + · · ·+ wnxn), (5)

where xi is the i-th input feature of a training sample X , wi is
the weight corresponding to the feature xi, b is the bias of the
linear model, and σ(z) = (1+e−z)−1 is the Sigmoid function
to make a binary classification. Specifically, the parameter

vector of logistic regression W = (w1, . . . , wn, b) is an
individual of the population.

As the objective (recall on the positive class) and the
constraint (false alarm) of each individual should be measured
based on data samples, we need to set up training data set
for individuals (i.e., classifiers) to evaluate their predictive
performance in terms of recall and false alarm. Given a
classifier W , its recall on the training set corresponds to the
individual’s fitness function, formulated as

f(W ) = Recalltrain(W ). (6)

The false alarm of the classifier is used to justify whether the
model can meet the constraint. If the false alarm is smaller
than the given constraint tolerance τ of Eq. (1), this individual
meets the constraint, being a feasible solution; otherwise, the
individual is an infeasible solution.

The proposed approach follows the conventional DE frame-
work in searching individuals that can achieve good recall and
meet the user’s concern on false alarm. Specifically, we adopt
the Latin Hypercube Sampling approach [28] to initialize the
population, so that the initial population can be dispersed as
far as possible in the search space. The DE/rand/1/bin operator
is used with the dither scale factor between 0 and 1 [29] to
enhance the global search ability.

To facilitate the conventional DE algorithm with the ability
of dealing with the constraint, we adopt the feasible rule [30]
for the selection of the next generation. The degree an indi-
vidual W violates the constraint is measured as

g(W ) = max(0, False alarmtrain(W )− τ), (7)

where False alarmtrain(W ) is the false alarm that an indi-
vidual W can perform on the training set, and τ is the false
alarm tolerance that may be raised by customers or software
developers. We refer to the violation degree of Eq. (7) to
proceed the selection step of DE between the parent and
its child. We can see that g(W ) = 0 indicates a feasible
individual that meets the constraint of Eq. (1). In this case,
we can select the individual with higher fitness value; whereas,
g(W ) > 0 indicates that W is an infeasible solution and that
the corresponding classifier cannot meet the constraint. In this
case, we select the individual with the smaller g(W ).

In the measurement of Eq. (7), the constraint τ is static
in the evolution process of DE. As will be shown in Sec-
tion VI-A, data samples of JIT-SDP frequently suffer from the
data shift problem and as a result, the resulting models which
are evolved by a static τ could often violate the constraints on
the future test data set even though they meet the constraint
on the training set.

To mitigate this issue, we propose to adaptively adjust the
constraint value, forming an adaptive constraint τ∗ during the
evolution process. By replacing the static constraint τ with the
adaptive one τ∗, an advanced DE algorithm with an adaptive
constraint is proposed. In this case, the degree an individual
W violates the constraint can be reformulated as

g∗(W ) = max(0, False alarmtrain(W )− τ∗), (8)
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Algorithm 1 The framework of the advanced DE algorithm with
an adaptive constraint.
Inputs: (1) the training set Dtrain, (2) a specific constraint value
τ , (3) population size N , (4) maximal generations T , and (5) the
proportion of optimal individuals a.

Outputs: an ensemble model Mensemble.

1: Set the adaptive constraint value as τ∗ = τ .
2: Initialize population with N individuals by Latin Hypercube

Sampling.
3: for generation t = 1 until T do
4: Mutation, Crossover: for each individual, conduct the

DE/rand/1/bin operation to generate an offspring, each of
which corresponds to one parent.

5: Evaluation: calculate fitness value as in Eq. (6) and constraint
violation as in Eq. (8) for all the individuals.

6: Selection: select the better one from a pair of the parent and
its offspring and pass this individual onto the next generation
by the feasible rule.

7: Adjust τ∗ as in Algorithm 2 with the current population P
and the current τ∗.

8: end for
9: Select the best a×N individuals by feasible rule to generate a

ensemble model Mensemble(·) with the majority voting rule.

where False alarmtrain(W ) is the false alarm that the model
W can achieve based on the training set. Especially, when the
constraint value τ∗ is tuned down, higher pressure is posed to
the false alarm that classifiers would perform on future data
set, improving the probability these classifiers can possibly
meet the constraint in future. The crucial point is how to set
the adaptive constraint τ∗ during the evolution process, for
which we will discuss in Section (IV-B).

Algorithm 1 summarizes the proposed advanced DE algo-
rithm with an adaptive constraint. In this paper, the population
size N , the maximum generation T and the crossover rate, are
set to 100, 1000, 1.0, respectively. Especially, the algorithm
selects the top a×N individuals to generate an ensemble of
classifiers for future prediction, for which N is the population
set. We set a = 10% in this paper, as such amount can
retain most good individuals while remove those that cannot
perform well. The majority voting is adopted to perform the
final prediction, for which the final predictions are determined
by the majority classes of the selected individual models.

B. An Adaptive Constraint

This section aims to detail how to automatically set an
adaptive constraint τ∗ of Eq. (8). The procedure is summarized
in Algorithm 2.

Especially, to facilitate the searching directions in view
of pursuing individuals that can better meet the constraint,
we propose to employ a validation set. That being said, the
validation set is independent of the training set in the adjusting
process of the adaptive constraint τ∗. It will only be used
to evaluate the constraint violation of an individual when
determining how to change the adaptive τ∗. The reason for
sparing a validation set is to estimate the performance that the
corresponding model would possibly perform in an unknown

Algorithm 2 The algorithm of the adaptive constraint τ∗.
Inputs: (1) the validation set Dvalid, (2) a specific constraint value
τ , (3) current adaptive constraint value τ∗, (4) population size N ,
(5) current population P , (6) the proportion of optimal individuals a
and (7) the shifting ratio c.

Outputs: adaptive constraint value τ∗.

1: Select the best a × N individuals from P by feasible rule.
Calculate their False_alarmvalid on validation set.

2: if there is a False_alarmvalid > τ then
3: τ∗ = (1− c)τ∗

4: else if there are more than half False_alarmvalid ≤ (1− a)τ
then

5: τ∗ = min(τ, (1 + c)τ∗)
6: else
7: τ∗ = τ∗

8: end if

prediction circumstance, based on which the constraint search
for τ∗ can be facilitated in an adaptive way.

We can see from Step 1 of Algorithm 2 that, the optimal
a × N individuals are selected to decide a better searching
direction of constraint values based on the validation set,
with the same reason for the model ensemble at Step 9
of Algorithm 1, where a is the proportion of the optimal
individuals. Given the chosen individuals, if there is any one
violating the given constraint τ based on the validation set, the
adaptive constraint value τ∗ would be reduced to (1 − c)τ∗

(Step 3) for which c ∈ (0, 1) denotes a shifting ratio. In this
way, we can pursue a searching direction that can probably
meet the constraint in future. Whereas, if half of the chosen
individuals have their false alarms being no larger than (1−a)τ
based on the validation set, the adaptive constraint value τ∗

is updated to min(τ, (1 + c)τ∗) (Step 5), slightly relaxing the
adaptive constraint. This hints the improvement room in terms
of pursuing a higher recall.

Ultimately, we can set the adaptive constraint value τ∗

throughout the evolution process of the proposed advanced
DE algorithm with adaptive constraint. In this paper, the
shifting ratio c is set to 1%. Too large c would cause a severe
change of the adaptive constraint value τ∗, causing too many
good solutions becoming infeasible and to be eliminated in
the search space; too small c would result in the change of
the adaptive constraint τ∗ being too small, requiring more
generations to evolve. In this paper, it is set to 1%, which
can reach the desired optimal constraint value within a proper
number of generations without losing too much information
about optimal solutions, so as to carry out deeper space
exploration.

V. EXPERIMENTAL SETUP

A. Dataset

Our studies use 10 real-world data sets to investigate the
effectiveness of our approach in addressing the constraint op-
timization problem in JIT-SDP, as shown in Table I. They were
chosen among projects with more than 2 years of duration, rich
history (>15k commits) and a wide range of defect-inducing
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TABLE I: An overview of the datasets. The last 10,000 software
changes (commits) are used in our experiments.

Project Total Defect- %Defect- Time PeriodChanges inducing inducing
Ansible 44,817 16,113 35.95 02/2012 - 07/2020
VScode 63,246 1,309 2.07 11/2015 - 07/2020

wp-Calypso 36,057 9,913 27.49 01/2014 - 07/2020
Elasticsearch 49,128 17,262 35.14 02/2010 - 07/2020
Googleflutter 17,842 227 1.27 10/2014 - 07/2020

Pytorch 27,838 11,150 40.05 01/2012 - 07/2020
Rails 59,825 14,240 23.80 11/2004 - 07/2020
Rust 91,623 1,469 1.60 06/2010 - 07/2020

Tensorflow 55,656 15,041 27.02 11/2015 - 07/2019
Homebrew 44,044 950 2.16 09/2017 - 03/2019

change ratio (1% ∼ 40%). The Commit Guru [19] tool was
used to collect the data with 14 features. The labels are defect-
inducing (positive class) or clean (negative class). We then
follow Kamei et al.’s [3] to conduct the data pre-process.
For a uniform investigation, we use the last 10k software
changes of each project in the experiments, which are ordered
chronologically.

Our studies involve the justification of the requirement of a
validation set. Thus, the total 10k software changes are divided
into the training and test sets with the ratio of 8:2 or into the
training, validation, and test sets with the ratio of 6:2:2 in the
chronological order.

B. Performance Evaluation

To the best of our knowledge, there has been no exist-
ing method in the domain of JIT-SDP targeting on solving
the constraint optimization problem of Eq. (1). In the ML
community, there have been only two classification models
that were adapted to cope with this problem as discussed in
Sec. III. Therefore, experimental studies are carried out on
the two approaches and the proposed advanced DE algorithm
with adaptive constraint. In this paper, we investigate the per-
formance of the three approaches with the constraint tolerance
values [0.2, 0.3, 0.4] (τ in Eq. (1)), individually.

Performance of the investigated methods is evaluated from
three aspects: the recall on the positive class, whether the
prediction meets the constraint of false alarm, and the overall
performance in terms of G-mean. Comparisons are conducted
based on the mean performance across 20 runs. Specifically,
recall of the positive class (corresponding to the defect-
inducing software changes in JIT-SDP) is the objective in
Eq. (1). The higher the recall is, the better predictive perfor-
mance a prediction model can achieve. We use tp to denote
the number of positive samples that are correctly predicted,
and use p to denote the total number of positive samples. The
objective can be formulated as Recall = tp/p.

The constraint in terms of false alarm is formulated as fp/n,
where fp denotes the number of negative samples that are
misclassified to a positive class, and n denotes the total number
of negative samples. We can see that false alarm is associated
with the performance of classifiers on the negative class. Given
a classifier that performs 20 times on the spared test set, if we
cannot detect significant difference between the achieved false

alarm and the given tolerance τ across multiple data sets and
20 runs, it is concluded that the model can meet the constraint.
The overall performance of the model is measured in G-mean
and calculated as

√
Recall × (1− False alarm).

VI. EXPERIMENTAL RESULTS

A. A Spared Validation Set Is Required

As previously mentioned in Sec. IV-A, this section aims
to demonstrate the data shift issue suffered by chronological
software changes, motivating the validation set for solving the
constraint optimization problem in JIT-SDP.

Table IIa shows the false alarm values of the shift threshold
approach for each individual tolerance τ . The last row presents
the maximal constraint violation across data sets. We can
see that the investigated ML approach usually violate the
constraint τ in a relatively large magnitude. For example, the
shift threshold approach always fails the constraint of a given
false alarm tolerance in wp-Calypso. Specifically, though the
approach can meet the constraint of τ = 0.2 in the training
set, the shift threshold approach can only achieve the false
alarm 0.3046 in the spared test set.

A potential reason for this phenomenon is that the training
set that consists of software changes committed at earlier time
slot may become obsolescent to construct classification models
that are used for predicting the labels of software changes in
the future test set, i.e., the samples in JIT-SDP probably suffers
from the data shift issue [31]. To justify this conjecture, we
adopt the stratified sampling technique that evenly divides the
entire data set into the training and test sets, so that the data
shift issue can be alleviated on the data level. Table IIb presents
the false alarm of the shift threshold approach performing
on the stratified data sets. We can see that the false alarm
values achieved by the same approach can be largely improved.
For example, in wp-Calypso, this approach can gain the false
alarm that is very close to its corresponding tolerance. This
observation can confirm our conjecture that software changes
in JIT-SDP suffers from the data shift issue.

As explained in Sec. III, to cater for this issue, we pro-
pose to spare a validation set to facilitate the search for
the classification threshold of the shift threshold approach.
Table IIc presents the false alarm the shift threshold approach
can perform when adopting the validation set. We can see
that, though the adapted approach cannot perform as good as
in Table IIb, it can better meet the constraints compared with
the case that does not spare the validation set.

Dynamic loss function approach has similar results in terms
of the false alarm constraints and thus is omitted in this paper.
Therefore, the adapted ML approaches are used to investigate
the answers to RQ1 and RQ2 from here onward.

B. How Well Do the Adapted ML Methods Solve the Con-
straint Optimization of JIT-SDP?

This section aims for answering part of RQ1 by investigat-
ing the performance of the adapted ML approaches in solving
the constraint optimization problem in JIT-SDP. Predictive
performance of the two methods in terms of recall (the
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TABLE II: Experimental results of false alarm that the original and adapted shift threshold methods perform across data sets.

(a) Training and test sets in the chronological
order of software changes in JIT-SDP.

Dataset false alarm tolerance τ
0.2 0.3 0.4

Ansible 0.2971 0.4181 0.5114
wp-Calypso 0.3046 0.4220 0.5228
Elasticsearch 0.2867 0.3977 0.5107
Googleflutter 0.1666 0.2627 0.3608
Homebrew 0.1949 0.3187 0.3993

Pytorch 0.2096 0.3308 0.4616
Rails 0.2358 0.3618 0.4744
Rust 0.2190 0.3158 0.3980

Tensorflow 0.2200 0.3238 0.4158
VScode 0.1870 0.3153 0.4222

max violation 0.1046 0.1220 0.1228

(b) Training and test sets being re-sampled
with the stratified technique.

Dataset false alarm tolerance τ
0.2 0.3 0.4

Ansible 0.2065 0.3040 0.4032
wp-Calypso 0.2049 0.3039 0.4116
Elasticsearch 0.1974 0.2989 0.3963
Googleflutter 0.1974 0.2973 0.3934
Homebrew 0.1939 0.2927 0.3963

Pytorch 0.2027 0.2924 0.3931
Rails 0.1964 0.2962 0.4075
Rust 0.2056 0.3034 0.4006

Tensorflow 0.1942 0.2982 0.4018
VScode 0.2071 0.3059 0.4004

max violation 0.0071 0.0059 0.0116

(c) Training and test sets in the chronological
order along with a spare validation set.

Dataset false alarm tolerance τ
0.2 0.3 0.4

Ansible 0.1505 0.3337 0.4375
wp-Calypso 0.2052 0.3096 0.4148
Elasticsearch 0.2610 0.3783 0.4837
Googleflutter 0.1072 0.2144 0.2144
Homebrew 0.1475 0.1475 0.4094

Pytorch 0.1945 0.2952 0.4288
Rails 0.2021 0.2938 0.4082
Rust 0.1183 0.3013 0.3509

Tensorflow 0.1868 0.3060 0.3932
VScode 0.1617 0.3097 0.3685

max violation 0.0610 0.0783 0.0837

objective), false alarm (the constraint), and G-mean across data
sets is presented in Table III. The reported performance is a
single value for the adapted shift threshold approach, and is
a mean value across 20 runs for the adapted dynamic loss
approach.

Specifically, as the adapted shift threshold approach is a
deterministic algorithm that has no randomness, the perfor-
mance is a single value (not mean). The false alarm failing
the given constraint τ is highlighted in red font (gray). As the
adapted dynamic loss approach has randomness, we conduct
the one sample t-test [32], a statistical test, to investigate
whether the false alarm can meet the given constraint τ at the
significance level 0.05. The false alarm significantly failing
the given constraint is also highlighted in red font (gray).

We can see that the adapted shift threshold approach fails
the constraint on 15 data sets out of the total 30; the adapted
dynamic loss approach fails the constraint on 11 sets, being
slightly better. In terms of the recall, the adapted shift threshold
approach can achieve better recall compared with the adapted
dynamic loss approach in 23 data sets out of the total 30. Over-
all, the adapted shift threshold approach performs relatively
well in terms of recall but it usually fails the constraint; the
adapted dynamic loss approach can obtain meet the constraint
better but it cannot achieve good recall.

Therefore, it is concluded that existing adapted ML methods
can solve the constraint optimization problem of JIT-SDP to
some extent, but there is still large improvement room.

C. How Well Does Our Approach Solve the Constraint Opti-
mization of JIT-SDP?

This section aims for answering RQ2 by comparing our
proposed method against existing adapted ML approaches
across the investigated data sets. Predictive performance of our
approach in terms of recall, false alarm, and G-mean across
data sets is reported in the last column part of Table III. The
reported performance is the mean value across 20 runs.

We perform the one sample t-test at the significance level
0.05 to statistically justify whether the false alarm of a classi-
fier can meet the given constraint τ . Significant failure in the
constraint is highlighted in red font. We perform the Wilcoxon
rank sum test [33] at the significance level 0.05 to judge

whether our proposed method significantly outperforms or is
significantly inferior to the adapted shift threshold approach
and the adapted dynamic loss approach, respectively, on each
data set. The parentheses associated to our method record
this comparison results, for which the first and the second
signs correspond to the adapted shifted threshold approach
and the adapted dynamic loss approach, respectively. The sign
“+” means that our approach performs significantly better
than its competitor; “−” means that our approach performs
significantly worse than its competitor; and “∼” means that
there is no significant difference between two approaches.

We can see from Table III that our method only fails the
constraint on 6 data sets out of the total 30, performing the best
among the three competing methods in terms of the constraint
of false alarm. In terms of the objective (recall), we can see
that our method performs similar to or significantly better
than the adapted shifted threshold approach in 17 data sets
out of the total 30, and the adapted dynamic loss approach
in 24 data sets, showing the superiority of our method in
achieving generally good recall over the existing adapted
ML approaches. In terms of the overall performance in G-
means, we can see that our method performs similar to or
significantly better than the adapted shifted threshold approach
in 22 data sets out of the total 30, and the adapted dynamic
loss approach in 25 data sets, showing the superiority of our
method in achieving generally good G-mean over the existing
adapted ML approaches. Therefore, it is concluded that our
method outperform its competitors with respect to all the three
performance aspects, demonstrating the effectiveness of the
proposed method.

Nevertheless, the proposed advanced DE algorithm with
an adaptive constraint is search-based, so that it has higher
computational cost and needs more time to get the prediction
model in comparison to the existing adapted ML approaches.
The adapted shift threshold method has the lowest computa-
tional cost. As the adapted dynamic loss approach need to
train models many times with varying loss functions, this
approach would have slighted higher computational cost than
the adapted shift threshold method.

Therefore, the proposed advanced DE algorithm with an
adaptive constraint can achieve generally better performance
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TABLE III: Predictive performance with respect to varying constraint tolerance. Significant violation of constraint is highlighted in red font
(gray). The sign “+” associated to our approach means that our approach performs significantly better than its competitor; “−” means that
our approach is significantly inferior to its competitor; and “∼” means that no significant difference is detected.

(a) The constraint tolerance 0.2.

Dataset Adapted shift threshold approach Adapted dynamic loss approach The proposed DE algorithm with an adaptive constraint
Recall False alarm G-mean Recall False alarm G-mean Recall False alarm G-mean

Ansible 0.4472 0.1505 0.6164 0.3970 0.1476 0.5816 0.2945 (−, −) 0.1413 0.5028 (−, −)
wp-Calypso 0.6409 0.2052 0.7137 0.5436 0.2110 0.6549 0.6449 (∼, +) 0.2022 0.7172 (∼, +)
Elasticsearch 0.6478 0.2610 0.6919 0.5423 0.2092 0.6548 0.6608 (+, +) 0.2539 0.7021 (+, +)
Googleflutter 0.6923 0.1072 0.7862 0.6154 0.1464 0.7248 0.6192 (−, ∼) 0.1003 0.7458 (−, +)
Homebrew 0.4286 0.1475 0.6044 0.4286 0.1739 0.5950 0.4643 (+, −) 0.1760 0.6168 (∼, ∼)

Pytorch 0.5074 0.1945 0.6393 0.4217 0.1725 0.5907 0.4731 (−, +) 0.1758 0.6244 (−, +)
Rails 0.5360 0.2021 0.6540 0.4011 0.1760 0.5749 0.5459 (+, +) 0.1860 0.6665 (+, +)
Rust 0.4000 0.1183 0.5939 0.6000 0.2094 0.6887 0.4200 (∼, −) 0.1757 0.5854 (∼, −)

Tensorflow 0.4586 0.1868 0.6107 0.3651 0.1860 0.5451 0.4766 (+, +) 0.2077 0.6145 (+, +)
VScode 0.4444 0.1617 0.6104 0.4815 0.1941 0.6229 0.5259 (+, +) 0.1971 0.6496 (+, +)

(b) The constraint tolerance 0.3.

Dataset Adapted shift threshold approach Adapted dynamic loss approach The proposed DE algorithm with an adaptive constraint
Recall False alarm G-mean Recall False alarm G-mean Recall False alarm G-mean

Ansible 0.6080 0.3337 0.6365 0.6043 0.2656 0.6661 0.5304 (−, −) 0.2393 0.6352 (∼, −)
wp-Calypso 0.7810 0.3096 0.7343 0.6952 0.3079 0.6937 0.7541 (−, +) 0.2914 0.7310 (−, +)
Elasticsearch 0.7783 0.3783 0.6956 0.6294 0.3047 0.6615 0.7531 (−, +) 0.3593 0.6946 (∼, +)
Googleflutter 0.6923 0.2144 0.7375 0.6231 0.2307 0.6922 0.6885 (∼, +) 0.2004 0.7418 (∼, +)
Homebrew 0.4286 0.1475 0.6044 0.7179 0.3169 0.6995 0.7357 (+, ∼) 0.2994 0.7172 (+, +)

Pytorch 0.6556 0.2952 0.6797 0.5752 0.3001 0.6343 0.6325 (−, +) 0.2807 0.6745 (−, +)
Rails 0.6439 0.2938 0.6743 0.5540 0.2767 0.6330 0.6732 (+, +) 0.3006 0.6862 (+, +)
Rust 0.8000 0.3013 0.7477 0.6000 0.3148 0.6412 0.6000 (−, ∼) 0.2762 0.6581 (−, +)

Tensorflow 0.5955 0.3060 0.6429 0.5244 0.2870 0.6114 0.6185 (+, +) 0.2991 0.6583 (+, +)
VScode 0.5926 0.3097 0.6396 0.5556 0.2918 0.6272 0.6556 (+, +) 0.3187 0.6682 (+, +)

(c) The constraint tolerance 0.4.

Dataset Adapted shift threshold approach Adapted dynamic loss approach The proposed DE algorithm with an adaptive constraint
Recall False alarm G-mean Recall False alarm G-mean Recall False alarm G-mean

Ansible 0.7437 0.4375 0.6468 0.6892 0.3732 0.6572 0.7231 (−, +) 0.3834 0.6675 (+, +)
wp-Calypso 0.8422 0.4148 0.7020 0.8108 0.4022 0.6962 0.8323 (−, +) 0.3966 0.7085 (+, +)
Elasticsearch 0.8103 0.4837 0.6468 0.7624 0.4246 0.6623 0.8050 (−, +) 0.4379 0.6726 (+, +)
Googleflutter 0.6923 0.2144 0.7275 0.8846 0.3666 0.7483 0.7308 (+, −) 0.3167 0.7063 (−, −)
Homebrew 0.7857 0.4094 0.6812 0.8821 0.4127 0.7195 0.8464 (+, −) 0.4102 0.7065 (+, −)

Pytorch 0.7796 0.4288 0.6673 0.6996 0.4151 0.6396 0.7524 (−, +) 0.3981 0.6729 (+, +)
Rails 0.7446 0.4082 0.6638 0.7174 0.4003 0.6559 0.7496 (∼, +) 0.3923 0.6748 (+, +)
Rust 0.8000 0.3509 0.7206 0.6000 0.4224 0.5887 0.7700 (∼, +) 0.3789 0.6900 (−, +)

Tensorflow 0.7357 0.3932 0.6681 0.6629 0.3886 0.6366 0.7223 (−, +) 0.3752 0.6717 (+, +)
VScode 0.6296 0.3685 0.6306 0.6593 0.3920 0.6328 0.6833 (+, ∼) 0.4016 0.6393 (+, ∼)

on the constraint optimization problem (Eq. (1)) in JIT-SDP,
deriving better models in terms of recall, constraint, and G-
mean. However, the proposed method is of higher computa-
tional cost compared with the adapted ML methods, and if
practitioners prefer a low cost on computing resources, the
adapted dynamic loss approach is recommended.

VII. CONCLUSION

This paper studies the research problem of pursuing the
best detection of positive data under the concern on a given
false alarm in the application domain of JIT-SDP, which
can be formulated as an constraint optimization problem. We
proposed an advance DE algorithm with an adaptive constraint
to tackle this research problem, and evaluated it by answering
the two research questions as follows.

Answer to RQ1: Applying existing ML methods directly to
address the research problem can usually fail the constraint, so
we propose to spare a validation set to facilitate the search for
the classification threshold of the shift threshold approach and

for the regulation term of the dynamic loss approach, leading
to the adapted versions of these two methods. Experimental
results showed that the adapted ML methods can solve the
constraint optimization problem of JIT-SDP to some extent,
but there is still large improvement room.

Answer to RQ2: We proposed an advanced DE algorithm
with an adaptive constraint, as a third approach, to tackle
the constraint optimization problem in JIT-SDP. Experimental
results with 10 real-world data sets from the domain of JIT-
SDP demonstrated that our proposed method can achieve gen-
erally better performance in terms of achieving good detection
of positive data and satisfying the given constraint tolerance.
However, the proposed method is of higher computational cost
compared with the adapted ML methods, and if practitioners
prefer a low cost on computing resources, the adapted dynamic
loss approach is recommended.
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